Асинхронный генератор своими руками: устройство, принцип работы, схемы
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератораАсинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.
Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сбореПринцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератораСуществуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностямиОтличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторовНаличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитамиВы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига.
Для этого потребуется не менее 128 магнитиков.Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ
Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs
Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8
Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE
Часть 5
https://www. youtube.com/watch?v=z2YSqVh2vM8
Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
Таблица 1
Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
2 | 28 | 36 | 60 |
3,5 | 45 | 56 | 100 |
5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторовСоветы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Список использованной литературы
- Кацман М.М. «Электрические машины» 2013
- А.А. Усольцев «Электрические машины» 2013
- Бартош А.И. «Электрика для любознательных» 2019
Генератор из асинхронного двигателя — схема, как сделать своими руками?
Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.
- Схема генератора из асинхронного двигателя ↓
- Устройство генератора ↓
- Изготовление генератора из двигателя ↓
- Оценка уровня эффективности – выгодно ли это? ↓
- Функционирование асинхронного двигателя как генератора ↓
- Применение ↓
- Советы по изготовлению и эксплуатации ↓
Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.
Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.
Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.
Схема генератора из асинхронного двигателя
схема генератора на базе асинхронного двигателя
В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:
- Обмотка возбуждения, которая находится на специальном якоре.
- Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.
Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:
- Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
- Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
- Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
- Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
Устройство генератора
Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:
- Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
- Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
- Контактные кольца имеют надежный крепеж к валу ротора.
- В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
- Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
- Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.
Изготовление генератора из двигателя
Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.
Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:
- Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
- Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
- Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
- Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
- Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
- Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
- После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
- Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
- Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
- Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
- Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
- Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.
После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.
Оценка уровня эффективности – выгодно ли это?
Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?
Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.
Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.
Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.
Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.
Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
- В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
- Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
- При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.
Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.
Функционирование асинхронного двигателя как генератора
В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:
- После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
- Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
- Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.
Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.
Применение
В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:
- Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
- Работа в качестве ГЭС с небольшой выработкой.
- Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
- Выполнение основных функций сварочного генератора.
- Бесперебойное оснащение переменным током отдельных потребителей.
Советы по изготовлению и эксплуатации
Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:
- Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
- В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
- Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
- Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
- Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.
Статья была полезна?
0,00 (оценок: 0)
Асинхронный генератор в качестве ветрового генератора
Асинхронный генератор в качестве ветрового генератора
Вращающиеся электрические машины обычно используются в ветроэнергетических системах, и большинство этих электрических машин могут функционировать как двигатель или генератор, в зависимости от их конкретное приложение. Но помимо синхронного генератора , который мы рассмотрели в предыдущем уроке, существует еще один, более популярный тип трехфазной вращательной машины, которую мы можем использовать в качестве генератора ветряной турбины, называемой 9. 0009 Индукционный генератор .
Как синхронный генератор, так и асинхронный генератор имеют аналогичную фиксированную схему обмотки статора, которая при возбуждении вращающимся магнитным полем создает трехфазное (или однофазное) выходное напряжение.
Однако роторы этих двух машин сильно различаются: ротор асинхронного генератора обычно состоит из одного из двух типов устройства: «беличьей клетки» или «намотанного ротора».
Однофазный индукционный генератор
Конструкция асинхронного генератора основана на очень распространенном асинхронном двигателе с короткозамкнутым ротором, поскольку они дешевы, надежны и легко доступны в широком диапазоне электрических размеров от машин с дробной мощностью до нескольких мегаватт, что делает их идеальными для использования как в домашних, так и в коммерческих возобновляемых источниках энергии ветра.
Кроме того, в отличие от предыдущего синхронного генератора, который должен быть «синхронизирован» с электрической сетью, прежде чем он сможет генерировать электроэнергию. Асинхронный генератор может быть подключен непосредственно к коммунальной сети и приводиться в действие лопастями ротора ветряной турбины при переменных скоростях ветра, как только он будет запущен из состояния покоя.
В целях экономии и надежности во многих ветряных турбинах в качестве генератора используются асинхронные двигатели, которые приводятся в действие через механическую коробку передач для увеличения скорости вращения, производительности и эффективности. Однако асинхронным генераторам требуется реактивная мощность, обычно обеспечиваемая шунтирующими конденсаторами в отдельных ветряных турбинах.
Асинхронные машины также известны как Асинхронные машины , то есть они вращаются со скоростью ниже синхронной при использовании в качестве двигателя и выше синхронной скорости при использовании в качестве генератора. Таким образом, при вращении быстрее, чем его нормальная рабочая скорость или скорость холостого хода, асинхронный генератор вырабатывает электричество переменного тока. Поскольку асинхронный генератор напрямую синхронизируется с основной электросетью, то есть вырабатывает электроэнергию с той же частотой и напряжением, выпрямители или инверторы не требуются.
Однако асинхронный генератор может обеспечивать необходимую мощность непосредственно в электросети, но ему также требуется реактивная мощность, которая обеспечивается электросетью. Автономная (автономная) работа асинхронного генератора также возможна, но недостатком здесь является то, что генератор требует дополнительных конденсаторов, подключенных к его обмоткам для самовозбуждения.
Трехфазные индукционные машины очень хорошо подходят для ветроэнергетики и даже гидроэнергетики. Асинхронные машины при работе в качестве генераторов имеют неподвижный статор и вращающийся ротор, как и у синхронного генератора. Однако возбуждение (создание магнитного поля) ротора осуществляется по-другому, и типичной конструкцией ротора является конструкция с короткозамкнутым ротором, в которой проводящие стержни встроены в корпус ротора и соединены между собой на своих концах закорачивающими кольцами, как показано на рисунке. .
Конструкция асинхронного генератора
Как уже упоминалось в начале, одно из многих преимуществ асинхронной машины заключается в том, что ее можно использовать в качестве генератора без каких-либо дополнительных схем, таких как возбудитель или регулятор напряжения, когда она подключена к трем -фазное питание от сети. При подключении неработающего асинхронного генератора к сети переменного тока в обмотке ротора индуцируется напряжение, аналогично трансформатору, частота которого равна частоте приложенного напряжения.
Уже в продаже Трехфазный индукционный генератор с самовозбуждением:…Поскольку проводящие стержни ротора с короткозамкнутым ротором замыкаются друг на друга, вокруг них протекает большой ток, и внутри ротора создается магнитное поле, заставляющее машину вращаться.
Поскольку магнитное поле клетки ротора следует за магнитным полем статора, ротор разгоняется до синхронной скорости, заданной частотой сетевого питания. Чем быстрее вращается ротор, тем ниже результирующая относительная разница скоростей между клеткой ротора и вращающимся полем статора и, следовательно, напряжение, наведенное на его обмотку.
Когда ротор приближается к синхронной скорости, он замедляется, так как ослабление магнитного поля ротора недостаточно для преодоления потерь на трение ротора в режиме холостого хода. В результате ротор теперь вращается медленнее, чем синхронная скорость. Это означает, что асинхронная машина никогда не сможет достичь своей синхронной скорости, так как для ее достижения не будет индуцированного тока в беличьей клетке ротора, не будет магнитного поля и, следовательно, не будет крутящего момента.
Разница между скоростью вращения статора, вращающего магнитное поле, и фактической скоростью вращения ротора обычно называется в асинхронных машинах «скольжением».
Проскальзывание должно существовать, чтобы на валу ротора возникал крутящий момент. Другими словами, «скольжение», которое является описательным способом объяснить, как ротор постоянно «проскальзывает» из-за синхронизации, представляет собой разницу в скорости между синхронной скоростью статора, определяемую как: n с = ƒ/P в об/мин, а фактическая скорость роторов n R также в об/мин и выражается в процентах (%-скольжение).
Тогда дробное скольжение s асинхронной машины определяется как:
Это скольжение означает, что работа асинхронных генераторов, таким образом, является «асинхронной» (несинхронизированной), и чем тяжелее нагрузка, приложенная к асинхронному генератору, тем выше результирующее скольжение, так как более высокие нагрузки требуют более сильных магнитных полей. Большее скольжение связано с большим наведенным напряжением, большим током и более сильным магнитным полем.
Таким образом, для того, чтобы асинхронная машина работала как двигатель, ее рабочая скорость всегда будет меньше скорости вращения поля статора, а именно, синхронной скорости. Чтобы асинхронная машина работала как генератор, ее рабочая скорость должна быть выше номинальной синхронной скорости, как показано на рисунке.
Характеристики крутящего момента/скорости асинхронной машины
В состоянии покоя вращающееся магнитное поле статора имеет одинаковую скорость вращения по отношению как к статору, так и к ротору, поскольку частота токов ротора и статора одинакова, поэтому в состоянии покоя скольжение положительно и равно единице ( s = +1 ).
При точно синхронной скорости разница между скоростью вращения и частотой вращения ротора и статора будет равна нулю, поэтому при синхронной скорости электрическая энергия не потребляется и не вырабатывается, поэтому скольжение двигателя равно нулю ( s = 0 ).
Если скорость генератора превышает эту синхронную скорость с помощью внешних средств, результирующим эффектом будет то, что ротор будет вращаться быстрее, чем вращающееся магнитное поле статора, а полярность индуцированного ротором напряжения и тока изменится на противоположную.
В результате скольжение становится отрицательным ( s = -1 ), а асинхронная машина вырабатывает ток с опережающим коэффициентом мощности обратно в электросеть. Мощность, передаваемая в виде электромагнитной силы от ротора к статору, может быть увеличена простым вращением ротора быстрее, что приведет к увеличению количества вырабатываемой электроэнергии. Характеристики крутящего момента асинхронного генератора (s = от 0 до -1) являются отражением характеристик асинхронного двигателя (s = от +1 до 0), как показано.
Скорость асинхронного генератора будет изменяться в зависимости от силы вращения (момент или крутящий момент), приложенной к нему энергией ветра, но он будет продолжать генерировать электричество до тех пор, пока его скорость вращения не упадет ниже холостого хода. На практике разница между скоростью вращения при пиковой генерирующей мощности и на холостом ходу (синхронная скорость) очень мала, всего несколько процентов от максимальной синхронной скорости.
Например, 4-полюсный генератор с синхронной частотой вращения холостого хода 1500 об/мин, подключенный к коммунальной сети с током 50 Гц, может производить свою максимальную генерируемую мощность при вращении только на 1-5% выше (от 1515 до 1575 об/мин), легко достигается с помощью редуктора.
Это очень полезное механическое свойство: генератор будет немного увеличивать или уменьшать свою скорость при изменении крутящего момента. Это означает, что редуктор будет меньше изнашиваться, что приведет к низким затратам на техническое обслуживание и длительному сроку службы, и это одна из наиболее важных причин использования асинхронного генератора , а не синхронного генератора на ветровой турбине, которая напрямую подключена. к коммунальной электросети.
Автономная индукционная машина
Выше мы видели, что асинхронный генератор требует, чтобы статор был намагничен от электросети, прежде чем он сможет генерировать электричество. Но вы также можете запустить асинхронный генератор в автономной автономной системе, подав необходимый противофазный ток возбуждения или намагничивания от конденсаторов возбуждения, подключенных к клеммам статора машины.
Это также требует наличия остаточного магнетизма в металлических пластинах ротора при запуске турбины. Типичная схема трехфазной асинхронной машины с короткозамкнутым ротором для использования вне сети показана ниже. Конденсаторы возбуждения показаны в схеме соединения звездой (звездой), но также могут быть соединены треугольником (треугольником).
Конденсаторный пусковой индукционный генератор
Конденсаторы возбуждения представляют собой стандартные пусковые конденсаторы двигателей, которые используются для обеспечения необходимой реактивной мощности для возбуждения, которая в противном случае обеспечивалась бы электросетью. Асинхронный генератор будет самовозбуждаться с помощью этих внешних конденсаторов только в том случае, если ротор имеет достаточный остаточный магнетизм.
В режиме самовозбуждения на выходную частоту и напряжение генератора влияют частота вращения, нагрузка на турбину и значение емкости конденсаторов в фарадах. Затем, чтобы произошло самовозбуждение генератора, должна быть минимальная скорость вращения для значения емкости, используемой в обмотках статора.
«Асинхронный генератор с самовозбуждением» (SEIG) является хорошим кандидатом на применение ветровой электроэнергетики, особенно при переменной скорости ветра и в удаленных районах, поскольку для создания магнитного поля им не требуется внешний источник питания. Трехфазный асинхронный генератор можно преобразовать в однофазный асинхронный генератор с переменной скоростью, подключив два конденсатора возбуждения к трехфазным обмоткам. Одно значение емкости C на одной фазе, а другое значение 2C на другой фазе, как показано на рисунке.
Однофазный выход трехфазного индукционного генератора
Благодаря этому генератор будет работать более плавно, работая ближе к единице (100%) коэффициента мощности (PF). В однофазном режиме можно получить почти трехфазный КПД, обеспечивающий примерно 80% максимальной мощности машины. Однако необходимо соблюдать осторожность при преобразовании трехфазного питания в однофазное, так как выходное линейное напряжение одной фазы будет в два раза больше, чем номинальное значение обмотки.
Асинхронные генераторы хорошо работают с однофазными или трехфазными системами, подключенными к сети, или в качестве автономного генератора с самовозбуждением для небольших ветроэнергетических установок, позволяющих работать с переменной скоростью. Однако асинхронным генераторам требуется реактивное возбуждение для работы на полной мощности, поэтому они идеально подходят для подключения к коммунальной сети как части связанной с сетью ветроэнергетической системы.
Чтобы узнать больше об «Асинхронных генераторах» или получить дополнительную информацию об энергии ветра о различных доступных системах генерации ветряных турбин, или изучить преимущества и недостатки использования асинхронных генераторов как части системы ветряных турбин, подключенной к сети, щелкните здесь, чтобы Получите копию одной из лучших книг по трехфазным индукционным генераторам с самовозбуждением прямо сегодня на Amazon.
Grizzly Industrial G2532 — Мощный двигатель 1 л.с… SAMSUNG DC31-00055D ИНДУКЦИОННЫЙ СУХОЙ ДВИГАТЕЛЬ OEM… Teco DSP0014, 1 л.с., 1800 об/мин, ODP, 56 рам,… Teco GP0014, 1 л.с., 1800 об/мин, TEFC, рама 143T,…Теория работы индукционного генератора | www.electriceasy.com
Как и машина постоянного тока, одна и та же асинхронная машина может использоваться как асинхронный двигатель, так и как асинхронный генератор без каких-либо внутренних модификаций. Индукционные генераторы также называются асинхронные генераторы .Прежде чем начать объяснять принцип работы асинхронного генератора , я предполагаю, что вы знаете принцип работы асинхронного двигателя. В асинхронном двигателе ротор вращается из-за скольжения (то есть относительной скорости между вращающимся магнитным полем и ротором). Ротор пытается догнать синхронно вращающееся поле статора, но безуспешно. Если ротор догоняет синхронную скорость, относительная скорость будет равна нулю, и, следовательно, ротор не будет испытывать крутящего момента.
Но что, если ротор вращается со скоростью, превышающей синхронную скорость?
Как работают индукционные генераторы?
- Предположим, источник переменного тока подключен к клеммам статора асинхронной машины. Вращающееся магнитное поле, создаваемое в статоре, тянет ротор за собой (машина действует как двигатель).
- Теперь, если ротор разгоняется до синхронной скорости с помощью первичного двигателя, скольжение будет равно нулю и, следовательно, чистый крутящий момент будет равен нулю. Ток ротора станет равным нулю, когда ротор работает на синхронной скорости.
- Если ротор заставить вращаться со скоростью, превышающей синхронную скорость, скольжение становится отрицательным. Ток ротора генерируется в противоположном направлении из-за того, что проводники ротора пересекают магнитное поле статора.
- Этот генерируемый ток ротора создает вращающееся магнитное поле в роторе, которое давит (воздействует в противоположном направлении) на поле статора. Это вызывает напряжение статора, которое толкает ток, вытекающий из обмотки статора, против приложенного напряжения. Таким образом, машина теперь работающий как асинхронный генератор (асинхронный генератор) .
Асинхронный генератор с самовозбуждением
Понятно, что асинхронной машине для возбуждения нужна реактивная мощность, независимо от того, работает она как генератор или двигатель. Когда асинхронный генератор подключен к сети, он получает реактивную мощность из сети. Но что, если мы хотим использовать асинхронный генератор для питания нагрузки без использования внешнего источника (например, сети)?Конденсаторная батарея может быть подключена к клеммам статора для подачи реактивной мощности на машину, а также на нагрузку.