Электро эдс: Главная — Компания “ЭДС Электро»

суть и принцип для начинающих чайников

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.

Определение ЭДС в физике

ЭДС – электродвижущая сила.  Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила — скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.

ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС  «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Схема водонапорной башни

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно,  чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

Водокачка

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Советская батарейка

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  •  Химическая ЭДС.  Возникает в батарейках и аккумуляторах вследствие  химических реакций.
  • Термо ЭДС.  Возникает, когда находящиеся при разных температурах контакты  разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при  помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник  пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление  внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС.
    ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС  –  сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи.  И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

 

Автор: Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Электродвижущая сила (ЭДС): формула расчета и определение

Например, все телевизионные приемники имеют входной импеданс 75 Ом и подключаются к антеннам коаксиальным кабелем именно с таким волновым сопротивлением. Чтобы приблизиться к идеальным генераторам ЭМП, источники питающего напряжения, используемые во всем промышленном и бытовом электронном оборудовании, изготавливаются со специальными электронными схемами стабилизации выходного напряжения, которые позволяют поддерживать практически постоянное напряжение питания в заданном диапазоне токов, потребляемых от источника ЭМП (иногда называемого источником напряжения).

Содержание

Что такое электродвижущая сила (ЭДС) и как ее рассчитать?

Электродвижущая сила, или сокращенно ЭДС, – это способность источника тока или элемента источника питания создавать разность потенциалов в электрической цепи. Источником питания является аккумулятор или перезаряжаемая батарея. Это скалярная физическая величина, равная работе внешних сил по перемещению одного положительного заряда. В этой статье мы рассмотрим теорию ЭМП, как оно возникает, для чего его можно использовать на практике и где оно применяется, и, прежде всего, как его рассчитать.

Электродвижущая сила – Электродвижущая сила; Э.Д.Ф. Скалярная величина, характеризующая способность внешнего и индуцированного электрических полей индуцировать электрический ток, равная линейному интегралу напряженности внешнего и индуцированного электрических полей,… … Политехнический терминологический словарь

ЭДС индукции

Электродвижущая сила может быть вызвана изменением магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина индуктивной ЭДС в цепи задается выражением

где – поток магнитного поля через замкнутую поверхность ограниченный петлей. Знак “-” перед выражением указывает на то, что индукционный ток, создаваемый ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

Затем, благодаря Максвеллу и Фарадею, модели, объясняющие ток, получили новую теорию поля. Это позволило разработать концепцию энергии, связанной с полем, как для статических потенциалов, так и для электродвижущей силы. Ключевые даты в развитии концепции ЭМП:

Определение и физическое значение

Прикладывание определенной разности потенциалов между двумя концами проводника приводит к тому, что электроны перетекают с одного конца на другой. Однако этого недостаточно для поддержания потока заряда в проводнике. Дрейф электронов вызывает снижение потенциала до тех пор, пока он не уравновесится (ток прекратится). Поэтому для получения постоянного тока необходимы механизмы, постоянно возвращающие описанную систему в исходную конфигурацию, т.е. для предотвращения скопления грузов в результате их перемещения. Для этого используются специальные устройства, называемые источниками питания.

В качестве иллюстрации их работы удобно рассмотреть замкнутый контур из сопротивления и гальванического источника энергии (батареи). Если предположить, что внутри батареи нет тока, то описанная проблема объединения зарядов остается нерешенной. Но в цепи с реальным источником питания электроны постоянно движутся. Это связано с тем, что внутри батареи также происходит поток ионов от отрицательного электрода к положительному. Источником энергии, которая перемещает эти заряды в батарее, являются химические реакции. Эта энергия называется электродвижущей силой.

ЭДС – это характеристика любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром действие источника ЭДС соответствует действию насоса, создающего давление воды. Поэтому символ этих устройств неразличим на гидравлических и электрических схемах.

Несмотря на свое название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Его численное значение равно работе, совершаемой зарядом, движущимся в замкнутом контуре. Источник ЭДС выражается формулой E=A/q, в котором:

  • E – электродвижущая сила в вольтах;
  • A – работа внешних сил по перемещению заряда в джоулях;
  • q – смещенный заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или заряда, а представляет собой способность электрического генератора разделять заряды.

Единицей измерения ЭДС является вольт (В). Так, ЭДС равна 1 В, если при перемещении заряда массой 1 килотонна по замкнутому контуру совершается работа в 1 Дж: [E] = I Дж/1 K = 1 В.

Что такое электродвижущая сила EMF

Электродвижущая сила (ЭДС) – в устройстве, принудительно разделяющем положительные и отрицательные заряды (генератор), величина, численно равная разности потенциалов между клеммами генератора при отсутствии тока в его цепи, измеряемая в вольтах.

Источники электромагнитной энергии (генераторы) – это устройства, преобразующие энергию любого неэлектрического типа в электрическую. Такими источниками являются, например:

Генераторы на электростанциях (тепловых, ветряных, атомных, гидроэлектростанциях), преобразующие механическую энергию в электрическую;

Гальванические элементы (батареи) и всевозможные аккумуляторы, преобразующие химическую энергию в электрическую и т.д.

ЭДС численно равна работе, совершаемой внешней силой при перемещении единичного положительного заряда внутри источника или самим источником, проводящим единичный положительный заряд по замкнутой цепи.

Электродвижущая сила EMF E – это скалярная величина, которая описывает способность стороннего поля и индуцированного электрического поля вызывать электрический ток. ЭДС E численно равна работе (энергии) W в джоулях (Joules), затраченной полем на перемещение единицы заряда (1 Кл) из одной точки поля в другую.

Единицей измерения ЭДС является вольт (В). Таким образом, ЭДС равна 1 В, если при перемещении заряда 1 Кл в замкнутой цепи совершается работа в 1 Дж: [E] = I Дж/1 Кл = 1 В.

Движение зарядов по участку электрической цепи сопровождается затратой энергии.

Величина, численно равная работе, совершаемой источником для перемещения единичного положительного заряда по данному участку цепи, называется напряжением U. Поскольку цепь состоит из внешней и внутренней цепи, мы различаем понятия напряжения внешней цепи Uвш и напряжения внутренней цепи Uвт.

Из этого следует, что ЭДС источника равна сумме внешнего напряжения U и внутреннего напряжения U цепи:

Эта формула выражает закон сохранения энергии в электрической цепи.

Измерение напряжений в различных частях цепи возможно только при замкнутой цепи. ЭДС измеряется между клеммами в разомкнутой цепи.

Напряжение, ЭДС и падение напряжения для активного биполярного полюса

Направление ЭДС – это направление, в котором положительные заряды внутри генератора перемещаются от минусовой стороны к плюсовой, что обусловлено неэлектрической природой.

Внутреннее сопротивление генератора – это сопротивление структурных компонентов внутри генератора.

Идеальным источником ЭДС является генератор переменного тока, внутреннее сопротивление которого равно нулю, а напряжение на его клеммах не зависит от нагрузки. Мощность идеального источника ЭМП бесконечна.

Условное изображение (электрическая схема) идеального генератора ЭДС с Е показано на рис. 1, а.

Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1, б), а мощность источника конечна. Схема идеального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС E и его внутреннего сопротивления Ri.

Диаграммы источников электродвижущей силы: а – идеальные, б – реальные.

На практике, чтобы привести режим работы реального генератора ЭМП к режиму работы идеального генератора, внутреннее сопротивление Ri реального генератора стараются сделать как можно меньше, а сопротивление нагрузки Rн должно быть подключено на величину, по крайней мере, в 10 раз большую, чем внутреннее сопротивление генератора, т.е. необходимо выполнить условие: Rn >> Ri

Для того чтобы выходное напряжение генератора ЭДС не зависело от нагрузки, оно стабилизируется с помощью специальных электронных схем стабилизации напряжения.

Поскольку внутреннее сопротивление реального генератора ЭМП не может быть бесконечно малым, оно минимизируется и стандартизируется, чтобы потребители электроэнергии могли подключаться к нему согласованно. В радиотехнике стандартные значения выходного сопротивления генераторов ЭМП составляют 50 Ом (промышленный стандарт) и 75 Ом (домашний стандарт).

Например, все телевизионные приемники имеют входной импеданс 75 Ом и подключаются к своим антеннам с помощью коаксиального кабеля с таким волновым сопротивлением.

Для приближения к идеальным генераторам ЭМП источники питающего напряжения, используемые во всем промышленном и бытовом электронном оборудовании, изготавливаются со специальными электронными схемами стабилизации выходного напряжения, которые позволяют выходному напряжению оставаться практически постоянным в заданном диапазоне токов, потребляемых от источника ЭМП (иногда называемого источником напряжения).

На электрических схемах источники ЭДС представляются следующим образом: E – источник постоянной ЭДС, e( t) – источник гармонической (переменной) ЭДС как функция времени.

Электродвижущая сила E батареи из одинаковых элементов, соединенных последовательно, равна электродвижущей силе одного элемента E, умноженной на число n элементов в батарее: E = nE.

Если вам понравилась эта статья, пожалуйста, поделитесь ею в социальных сетях. Это поможет нашему сайту развиваться!

Однако это понятие имеет множество физических объяснений в различных отраслях технических знаний.

Понятие ЭМП: что это такое, простыми словами, объясняется во всех его вариантах

Проще говоря, ЭДС можно описать как результат действия внешних сил, при котором единичный заряд перемещается по цепи.

Однако это понятие имеет множество физических объяснений в различных отраслях технических знаний.

В химии, например, он относится к электролитической разности потенциалов и разделению электрических зарядов. В физике это электродвижущая сила, создаваемая на конце электрической термопары.

Для того чтобы определить истинное значение ЭМП, необходимо рассмотреть все различные толкования этого слова.

В целом, ЭДС очень похожа на напряжение, но разница в том, что ЭДС – это то же самое напряжение без нагрузки, подключенной к источнику питания.

Электромагнитная индукция была описана Фарадеем, который был создателем закона, объясняющего понятие и явление электромагнитной индукции.

Главной особенностью такой индукции является способность электромагнитного поля наводить ЭДС в близлежащем проводящем элементе.

При этом должна измениться величина поля или направление его векторов. Кроме того, поле должно перемещаться относительно проводников или, в качестве альтернативы, устройство должно перемещаться относительно поля. Это и вызывает разность потенциалов.

Межобмоточная индукция аналогична электромагнитной индукции и используется в трансформаторах, где магнитный поток одной обмотки влияет на напряжение другой.

Перекрестная индукция включает в себя изменение направления и силы тока в одной катушке и наведение такой же ЭДС на проводниках соседней катушки.

Эта концепция используется в электротехнике (для создания преобразователя переменного тока, который помогает получить необходимые значения эффективных величин) и электронике.

Свойства электромагнитной индукции используются в конструкции асинхронных и синхронных двигателей, в которых индукционные катушки являются основным компонентом.

Когда двигатель работает, в обмотке индуцируется противоположная ЭДС, которая передается обратно в существующее напряжение.

Это приводит к тому, что при увеличении нагрузки потребляемый двигателем ток быстро возрастает, и возникает так называемый пусковой ток.

В генераторах происходят те же процессы, что и в электродвигателе. Эти процессы также меняются на противоположные, и в устройстве создается магнитное поле.

При разработке таких устройств учитывается распределение тока и вероятность падения напряжения на отдельных участках цепи.

Обратите внимание на силу внутреннего сопротивления, которое действует как параллельное соединение с цепью.

Этот метод встречается в маленьких батарейках и других небольших энергетических установках, привычных для обычных людей.

В этом случае ЭМП является результатом протекания химических реакций. Когда на батарее есть напряжение, источник питания полностью готов к работе. Через некоторое время ЭДС там становится меньше, а сопротивление увеличивается.

Измерив напряжение на неподключенной батарейке, вы увидите обычные 1,5 В, но при подключении нагрузки к той же батарейке устройство, в которое вставлена батарейка, не работает.

Это происходит из-за недостатка напряжения и тока, так как батарея выдает 1,2 В при отдаче тока, что недостаточно для нормальной работы.

Источник электрической энергии производит определенную работу путем перемещения электрических зарядов в замкнутом контуре…

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике необходим внешний источник энергии, чтобы постоянно создавать разность потенциалов между концами проводника. Такие источники энергии называются источниками электрической энергии (или источниками тока).

Источники электроэнергии имеют определенную электродвижущая сила (сокращение от ЭМП), который создает и поддерживает разность потенциалов между концами проводника в течение длительного времени. Иногда говорят, что ЭМП создает электрический ток в цепи. Обратите внимание, что это определение относительно, поскольку выше мы уже установили, что создание и существование электрического тока обусловлено электрическим полем.

Источник электричества производит определенную работу, перемещая электрические заряды в замкнутой цепи….

Определение: Работа, совершаемая источником электрической энергии при перемещении единицы положительного заряда в замкнутой цепи, называется ЭДС источника.

За единицу электродвижущей силы принят вольт (аббревиатура вольт обозначается буквой V или V – “ve” по-латыни).

ЭДС источника электричества равна одному вольту, если при перемещении одного кулона электричества по замкнутой цепи источник электричества совершает работу, равную одному джоулю:

На практике для измерения ЭМП используются как более крупные, так и более мелкие единицы измерения, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной части вольта (10-3 В)

1 микровольт (мкВ, μV), равный одной миллионной части вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ = 1000 мкВ.

Сегодня существует несколько типов источников электроэнергии. Впервые в качестве источника электричества была использована гальваническая батарея, состоящая из нескольких цинковых и медных колец, между которыми была помещена кожа, смоченная в кислой воде. В гальванической батарее химическая энергия преобразуется в электрическую (подробнее см. главу XVI). Гальваническая батарея получила свое название от имени итальянского физиолога Луиджи Гальвани (1737-1798) – одного из основоположников электричества.

Многочисленные эксперименты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. В начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для многих блестящих экспериментов.

Источники электроэнергии, работающие за счет преобразования химической энергии в электрическую, называются химическими источниками электроэнергии.

Вторым основным источником электроэнергии, который широко используется в электро- и радиотехнике, является генератор. Генераторы преобразуют механическую энергию в электрическую.

На электрических схемах источники и генераторы электроэнергии обозначаются, как показано на рисунке 1.

Рисунок 1. Символы для обозначения источников электрической энергии: a – источник ЭМП, общее обозначение, b – источник тока, общее обозначение; c – химический источник электроэнергии; d – батарея химических источников; e – источник тока; f – источник переменного напряжения; g – генератор.

В химических источниках электроэнергии и в генераторах электродвижущая сила проявляется одинаково, создавая разность потенциалов на клеммах источника и поддерживая ее в течение длительного времени. Эти терминалы называются полюса источника электроэнергии. Один полюс источника электрической энергии имеет положительный потенциал (без электронов), он называется положительным (+) полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), который обозначается знаком минус (-) и называется отрицательным полюсом.

Источники электроэнергии передают электроэнергию по проводам ее потребителям (электрические лампочки, электродвигатели, электрические дуги, электронагреватели и т.д.).

Определение Совокупность источника электричества, его приемника и соединительных проводов называется электрической цепью.

Простая электрическая цепь показана на рисунке 2.

Рисунок 2. Простая электрическая цепь: B – источник электроэнергии; SA – выключатель; EL – приемник электроэнергии (лампа).

Чтобы электрическая цепь проводила электричество, она должна быть замкнутой. В замкнутой цепи непрерывно течет ток, потому что между полюсами источника электричества существует определенная разность потенциалов. Эта разность потенциалов называется напряжение источника и обозначается буквой U. Единицей измерения напряжения является вольт. Как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения ЭДС и напряжения используется прибор, называемый вольтметром. вольтметр. Если вольтметр подключить непосредственно к полюсам источника электроэнергии, он покажет ЭДС источника электроэнергии при разомкнутой цепи и напряжение на его клеммах при замкнутой цепи: (Рисунок 3).

Рисунок 3. Измерение ЭДС и напряжения источника электроэнергии: a – измерение ЭДС источника электроэнергии; b – измерение напряжения на клеммах источника электроэнергии…

Обратите внимание, что напряжение на клеммах источника электроэнергии всегда меньше его ЭДС.

ПОНРАВИЛАСЬ ЛИ ВАМ ЭТА СТАТЬЯ? ПОДЕЛИТЕСЬ ИМ СО СВОИМИ ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Читайте далее:

  • 1 Понятие электромагнитного поля и его различные проявления. Материальность – Работа в школе.
  • Значение слова ЭЛЕКТРОТЕХНИКАЦИЯ. Что такое ЭЛЕКТРОТЕХНИКА?.
  • Урок 7 Свободные и вынужденные электромагнитные колебания. колебательный контур – физика – 11 класс – Русская электронная школа.
  • Электричество. Сила электричества.
  • Разность потенциалов – это разность потенциалов. Что такое разность потенциалов?.
  • Значение слова ИНДУКЦИЯ. Что такое индукция?.
  • Электротехника: основы, концепции, термины и определения.

Электродвижущая сила | Определение, символы и единицы измерения

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полета на Луну до управления космосом — мы изучаем широкий спектр тем, которые питают наше любопытство к космосу!

Содержание

  • Введение

Краткие факты

  • Факты и сопутствующий контент

Викторины

  • Электричество: короткое замыкание и постоянный ток

6.

1 Электродвижущая сила – введение в электричество, магнетизм и электрические цепи
ЦЕЛИ ОБУЧЕНИЯ

К концу раздела вы сможете:
  • Описать электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните основные принципы работы батареи

Если вы забудете выключить автомобильные фары, они будут постепенно тускнеть по мере разрядки аккумулятора. Почему они не мигают внезапно, когда энергия батареи заканчивается? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разрядки батареи. Причина снижения выходного напряжения у разряженных аккумуляторов заключается в том, что все источники напряжения имеют две основные части — источник электрической энергии и внутреннее сопротивление. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Напряжение имеет множество источников, некоторые из которых показаны на Рисунке 6.1.1. Все такие устройства создают 90 156 разность потенциалов 90 157  и могут подавать ток, если они подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС). ЭДС вообще не является силой, но термин «электродвижущая сила» используется по историческим причинам. Он был придуман Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как 9.0156 вольтова столб . Поскольку электродвижущая сила не является силой, эти источники принято называть просто источниками ЭДС (произносится буквами «э-э-э-э»), а не источниками электродвижущей силы.

(рис. 6.1.1)  

Рисунок 6.1.1  Различные источники напряжения. а) ветряная электростанция Бразос в Флуванне, штат Техас; (б) Красноярская ГЭС в России; в) солнечная ферма; (d) группа никель-металлогидридных аккумуляторов. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet»/Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если электродвижущая сила вовсе не сила, то что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы, подключенной к батарее, как показано на Рисунке 6. 1.2. Аккумулятор можно смоделировать как устройство с двумя клеммами, в котором одна клемма имеет более высокий электрический потенциал, чем вторая клемма. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

(рис. 6.1.2)  

Рисунок 6.1.2  Источник ЭДС поддерживает на одной клемме более высокий электрический потенциал, чем на другой клемме, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, в источнике ЭДС нет чистого потока заряда. Как только батарея подключена к лампе, заряды текут от одной клеммы батареи, через лампу (заставляя лампу загораться) и обратно к другой клемме батареи. Если мы рассмотрим положительный (обычный) ток, положительные заряды покидают положительную клемму, проходят через лампу и входят в отрицательную клемму.

Положительный ток полезен для большей части анализа цепей в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному току. Поэтому более реалистично рассмотреть движение электронов для анализа схемы на рисунке 6.1.2. Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя клеммами, отрицательные заряды (электроны) должны перемещаться от положительной клеммы к отрицательной. Источник ЭДС действует как зарядовый насос, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов. Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила электрического поля, действующая на отрицательный заряд, действует в направлении, противоположном электрическому полю, как показано на Рисунке 6.1.2. Чтобы отрицательные заряды переместились на отрицательный полюс, над отрицательными зарядами должна быть совершена работа. Для этого требуется энергия, которая возникает в результате химических реакций в аккумуляторе. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами. ЭДС равна работе, совершаемой над зарядом на единицу заряда () при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда — кулон, единицей ЭДС является вольт ().

Напряжение на клеммах  аккумулятора – это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея представляет собой источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами. Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что реальная батарея имеет внутреннее сопротивление и напряжение на клеммах всегда меньше, чем ЭДС батареи.

Происхождение потенциала батареи

Комбинация химических веществ и состав клемм в батарее определяют ее ЭДС. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, представляет собой одну из наиболее распространенных комбинаций химических веществ. На рис. 6.1.3 показана одна ячейка (одна из шести) этой батареи. Катодная (положительная) клемма элемента соединена с пластиной из оксида свинца, тогда как анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

(рис. 6.1.3)  

Рисунок 6.1.3  Химические реакции в свинцово-кислотном элементе разделяют заряд, направляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины оксида свинца соединены с положительным или катодным выводом элемента. Серная кислота проводит заряд, а также участвует в химической реакции.

Знание того, как взаимодействуют химические вещества в свинцово-кислотном аккумуляторе, помогает понять потенциал, создаваемый аккумулятором. На рис. 6.1.4 показан результат одной химической реакции. Два электрона размещены на анод , делая его отрицательным, при условии, что катод поставляет два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона. Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет полной цепи, позволяющей доставить два электрона к катоду. Во многих случаях эти электроны исходят от анода, проходят через сопротивление и возвращаются к катоду. Заметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

(рис. 6.1.4)  

Рисунок 6.1.4  В свинцово-кислотной батарее два электрона направляются на анод элемента, а два электрона удаляются с катода элемента. Химическая реакция в свинцово-кислотном аккумуляторе помещает два электрона на анод и удаляет два электрона с катода. Для продолжения требуется замкнутая цепь, поскольку два электрона должны быть подведены к катоду.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления потоку тока в источнике напряжения называется  внутреннее сопротивление . Внутреннее сопротивление батареи может вести себя сложным образом. Обычно он увеличивается по мере разрядки аккумулятора из-за окисления пластин или снижения кислотности электролита. Однако внутреннее сопротивление может также зависеть от величины и направления тока через источник напряжения, его температуры и даже его истории. Внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов, например, зависит от того, сколько раз и насколько глубоко они разряжались. Простая модель батареи состоит из идеализированного источника ЭДС и внутреннего сопротивления (рис. 6.1.5).

(рис. 6.1.5)  

Рисунок 6.1.5  Батарея может быть смоделирована как идеализированная ЭДС () с внутренним сопротивлением (). Напряжение на клеммах аккумулятора равно .

Предположим, внешний резистор, известный как сопротивление нагрузки, подключен к источнику напряжения, например к батарее, как показано на рис. 6.1.6. На рисунке показана модель батареи с ЭДС, внутренним сопротивлением и нагрузочным резистором, подключенным к ее клеммам. Используя обычный ток, положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи. Напряжение на клеммах батареи зависит от ЭДС, внутреннего сопротивления и тока и равно

(6.1.1)  

При заданных ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала внутреннего сопротивления.

(рис. 6.1.6)  

Рисунок 6.1.6  Схема источника напряжения и его нагрузочного резистора. Поскольку внутреннее сопротивление включено последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рис. 6.1.7. По цепи протекает ток, и падение потенциала на внутреннем резисторе равно . Напряжение на клеммах равно , что равно падение потенциала на нагрузочном резисторе. Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что на самом деле это изменение потенциала, или . Однако  часто опускается для удобства.

(рис. 6.1.7)  

Рисунок 6.1.7  График зависимости напряжения от цепи аккумулятора и сопротивления нагрузки. Электрический потенциал увеличивает ЭДС батареи из-за химических реакций, совершающих работу над зарядами. В аккумуляторе происходит уменьшение электрического потенциала из-за внутреннего сопротивления. Потенциал уменьшается из-за внутреннего сопротивления (), делая напряжение на клеммах батареи равным (). Затем напряжение уменьшается на (). Ток равен .

Ток через нагрузочный резистор составляет . Из этого выражения мы видим, что чем меньше внутреннее сопротивление, тем больший ток дает источник напряжения на свою нагрузку. По мере разрядки батарей значение  увеличивается. Если  составляет значительную долю сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

ПРИМЕР 6.

1.1
Анализ цепи с аккумулятором и нагрузкой

Данная батарея имеет ЭДС и внутреннее сопротивление . (a) Рассчитайте напряжение на его клеммах при подключении к нагрузке. (b) Каково напряжение на клеммах при подключении к нагрузке? в) Какую мощность рассеивает нагрузка? (d) Если внутреннее сопротивление возрастает до , найдите ток, напряжение на клеммах и мощность, рассеиваемую нагрузкой.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток найден, напряжение на клеммах можно рассчитать по уравнению. Как только ток найден, мы также можем найти мощность, рассеиваемую резистором.

Решение

а. Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в приведенное выше выражение дает 90 123

   

Введите известные значения в уравнение, чтобы получить напряжение на клеммах:

   

Напряжение на клеммах здесь лишь немного ниже ЭДС, что означает, что ток, потребляемый этой легкой нагрузкой, незначителен.

б. Точно так же с текущий

   

Напряжение на клеммах теперь равно

.

   

Напряжение на клеммах демонстрирует более значительное снижение по сравнению с ЭДС, что означает большую нагрузку для этой батареи. «Большая нагрузка» означает большее потребление тока от источника, но не большее сопротивление.

с. Мощность, рассеиваемую нагрузкой, можно найти по формуле. Ввод известных значений дает

   

Обратите внимание, что эту мощность можно также получить с помощью выражения или , где напряжение на клеммах (в данном случае).

д. Здесь внутреннее сопротивление увеличилось, возможно, из-за разрядки батареи, до точки, где оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, что дает

   

Теперь напряжение на клеммах равно

.

   

, а мощность, рассеиваемая нагрузкой, равна

.

   

Мы видим, что повышенное внутреннее сопротивление значительно уменьшило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиться по многим причинам. Например, внутреннее сопротивление перезаряжаемой батареи увеличивается по мере увеличения количества перезарядок батареи. Повышенное внутреннее сопротивление может иметь два последствия для батареи. Во-первых, напряжение на клеммах уменьшится. Во-вторых, батарея может перегреться из-за увеличения мощности, рассеиваемой внутренним сопротивлением.

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 6.1

Если вы поместите провод непосредственно через две клеммы аккумулятора, эффективно закоротив клеммы, аккумулятор начнет нагреваться. Как вы думаете, почему это происходит?

Тестеры аккумуляторов

Тестер аккумуляторов , например те, что показаны на рис. 6.1.8, используют небольшие нагрузочные резисторы для преднамеренного отбора тока, чтобы определить, падает ли потенциал на клеммах ниже допустимого уровня. Хотя измерить внутреннее сопротивление батареи сложно, тестеры батарей могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея слабая, о чем свидетельствует низкое напряжение на клеммах.

(рис. 6.1.8)  

Рисунок 6.1.8  Тестеры аккумуляторов измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние аккумулятора. (a) Специалист по электронике ВМС США использует тестер батарей для проверки больших батарей на борту авианосца USS Nimitz . Тестер батареи, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах. (кредит a: модификация работы Джейсона А. Джонстона; кредит b: модификация работы Кейта Уильямсона)

Некоторые аккумуляторы можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в электроприбор. Это обычно делается в автомобилях и в батареях для небольших электроприборов и электронных устройств (рис.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *