Конденсаторная сварка схема своими руками: Конденсаторная сварка: схемы, описание, оборудование

Содержание

Схема и описание конденсаторной сварки своими руками: общие сведения, изготовление устройства

Конденсаторная сварка — это один из методов бесшовного соединения металлических деталей. Он осуществляется благодаря подаче тока и созданию короткого замыкания. Из-за этого металл расплавляется, и две заготовки надёжно скрепляются друг с другом. Такой процесс довольно дорогой, поэтому лучше выполнять его при помощи самодельного устройства. В этом поможет схема и описание конденсаторной сварки своими руками.

Общие сведения

Конденсаторная сварка считается одной из самых часто применяемых. Свою популярность она получила благодаря высокому качеству соединения и его долговечности. Чтобы использовать её для своих целей, необходимо подробно изучить всю доступную информацию. Она поможет избежать ошибок в изготовлении устройства и процессе соединения деталей.

Достоинства и недостатки

Самодельная контактная сварка на конденсаторах часто применяется не только в промышленности, но и в домашних условиях. Для её осуществления достаточно небольшого помещения, в котором можно расположить малогабаритный аппарат.

Основные преимущества технологии:

  • высокая производительность;
  • возможность скрепления деталей, изготовленных из разных материалов;
  • долговечность применяемого оборудования;
  • малое тепловыделение;
  • высокая точность и качество шва;
  • отсутствие затрат на покупку дополнительных расходных материалов.

Несмотря на большое количество достоинств, у технологии есть и несколько недостатков. Их обязательно нужно принимать во внимание перед планированием и началом работы. В противном случае можно столкнуться с проблемами, которые снизят качество изделия и повлекут за собой дополнительные финансовые затраты.

Среди основных недостатков выделяются такие:

  • ограниченность размера сечения соединяемых деталей;
  • кратковременность мощности процесса;
  • помехи в сети, создаваемые импульсной нагрузкой.

Особенности применения

Во время конденсаторной сварки наблюдаются некоторые особенности, которые по-разному влияют на качество работы. Из-за этого следует учитывать все мельчайшие факторы и стараться добиться идеального результата.

Основные особенности:

  1. Запас энергии для выполнения сварки производится в специальных конденсаторах, которые устанавливаются внутри аппарата.
  2. Продолжительность процесса выделения энергии составляет от 1 до 3 миллисекунд. За счёт этого снижается термическое воздействие на зону, находящуюся вокруг места контакта.
  3. Для выполнения сварки в домашних условиях необходимо подключать прибор к обычной электросети, а в промышленности — к специальным устройствам, обладающим высокой мощностью.
  4. Лучше всего использовать конденсаторную сварку для ремонта кузова автомобиля или любого другого транспортного средства. С её помощью тонкий лист металла не будет подвержен деформации, что значительно улучшит качество выполненной работы.

Основные требования и технологические приёмы

Для того чтобы хорошо выполнить соединение двух деталей, необходимо принять во внимание основные требования к процессу. Они помогут избежать недочётов в работе и снизят риск возникновения непредвиденной ситуации.

Условия проведения работы:

  1. Для обеспечения максимально надёжного соединения необходимо в момент импульса оказывать достаточное давление контактных элементов на заготовки.
  2. Разжимать электроды следует через небольшой промежуток времени после завершения импульса. Это поможет получить лучшую кристаллизацию деталей.
  3. Поверхности скрепляемых деталей должны быть хорошо очищены от каких-либо загрязнений (ржавчина, плёнка окиси). Это позволит снизить сопротивление и увеличить воздействие тока на заготовку. При этом эффективность сварки значительно повысится.
  4. При выборе электродов следует отдавать предпочтение медным стержням. Их диаметр в точке контакта должен быть в 3 или более раз больше толщины скрепляемых деталей.

Кроме этого, очень важно правильно выбрать способ воздействия на свариваемые элементы. Все они используются для соединения определённых деталей и подходят для той или иной конструкции.

Среди них выделяются следующие:

  1. Точечная. Она используется для скрепления элементов, которые имеют различную толщину. Схема точечной сварки на конденсаторах предусматривает её использование в приборостроении и электронике.
  2. Роликовая. Этот вид представляет собой несколько последовательных точечных соединений, которые образуют сплошной шов. В такой сварке используются электроды, имеющие форму вращающейся катушки.
  3. Ударная. Она предназначается для создания цельных конструкций из деталей с небольшим сечением. Перед началом процесса подаётся дуговой заряд, который оплавляет края заготовок. Благодаря этому упрощается сваривание элементов после их соприкосновения.

Самодельные устройства

Есть несколько способов смастерить своими руками аппарат для конденсаторной сварки. Каждый из них выбирается исходя из особенности формы и размера конструкции, которую нужно сваривать, а также её назначения.

Простой вариант

Самая простая конструкция применяется только для соединения деталей толщиной до 0,5 миллиметра. Во всех остальных случаях установка не сможет качественно справиться со своей задачей. Такой аппарат можно изготовить в любой мастерской или гараже. Принцип его работы основывается на подачи импульса через трансформатор. Один из концов его вторичной обмотки подводится к электроду, а другой — к обрабатываемой детали.

Особенности процесса изготовления аппарата:

  1. За основу можно взять схему, в которой первичная обмотка подсоединяется к электросети.
  2. Один из её концов должен проходить через диагональ преобразователя в виде диодного моста, а другой — через тиристор, управляемый кнопкой пуска.
  3. Для вырабатывания необходимого импульса следует применять конденсатор ёмкостью от 1 до 2 тыс. микрофарад.
  4. Его обмотку (300 витков) лучше всего делать из ПЭВ провода с сечением не более 0,8 миллиметров.
  5. Вторичную обмотку (10 витков) следует изготавливать из медной шины.
  6. В качестве прибора управления может служить тиристор ПТЛ-50 или КУ200.

Сложная конструкция

Для изготовления более многофункционального прибора понадобится больше материалов и времени. Однако это даст возможность соединять заготовки толщиной около 1 миллиметра.

Нюансы создания аппарата своими руками:

  1. В качестве прибора для управления импульсом применяется бесконтактный пускатель МТТ4К, который рассчитан на силу электрического тока в 80 ампер. Блок дополняется диодами, резистором и тиристорами.
  2. В главной цепи входного трансформатора встраивается реле. С его помощью можно настроить скорость и интервал срабатывания установки.
  3. Необходимая для импульса энергия накапливается в электролитических конденсаторах, которые объединены в общую батарею при помощи параллельного соединения.
  4. Первичная обмотка трансформатора выполняется из провода сечением не более полутора миллиметров, а вторичная — из медной шины.

Принцип действия изготовленного своими руками прибора соответствует стандартной схеме. Она одинакова для всех подобных устройств и идеально подходит для работы аппарата в домашних условиях.

Порядок действий:

  1. После включения устройства срабатывает реле.
  2. С его помощью активируются контакты тиристоров, и включается трансформатор.
  3. Как только конденсатор будет полностью разряжен, происходит отключение аппарата.

Этапы работы

Процесс выполнения конденсаторной сварки довольно простой, и понять его сможет даже человек, который никогда не делал подобную работу. Она выполняется в три этапа, на которые затрачивается минимальное количество времени. От точности соблюдения порядка действий будет зависеть качество шва и прочность конструкции.

Порядок действий:

  1. Начальная стадия процесса подразумевает тщательную подготовку свариваемых деталей. Первым делом с их поверхности счищается ржавчина. Затем удаляются пыль, остатки каких-либо веществ и прочие загрязнения. Если этого не сделать, то шов получится кривым и хрупким.
  2. Обе заготовки стыкуются друг с другом в нужном положении.
  3. Затем они помещаются между двумя электродами.
  4. К месту соединения подводятся контакты.
  5. Мастер включает устройство, и на них подаётся импульс нужной силы.
  6. После завершения этой процедуры электроды возвращаются в начальное положение.
  7. Соединённые детали вынимаются, и проверяется качество шва.
  8. При необходимости заготовки поворачиваются под нужным углом, и сварка продолжается аналогичным образом.

Техника безопасности

Во время эксплуатации аппарата для контактной сварки нужно соблюдать простые меры предосторожности. С их помощью можно избежать поломки оборудования и снизить риск получения какой-либо серьёзной травмы (ожог от попадания раскалённого металла, удар электрическим током, раны, нанесённые движущимися частями устройства).

Основные правила техники безопасности:

  1. Запрещается выполнять какие-либо сварочные работы с незаземленным устройством.
  2. Чтобы избежать поражения электрическим током, не рекомендуется эксплуатировать аппарат, имеющий повреждения в защитном корпусе.
  3. Рабочий должен иметь прямой доступ к устройству аварийного отключения.
  4. Включать прибор можно только сухими руками. При этом также нужно проверить пространство вокруг аппарата на наличие влаги.
  5. Перед началом сварки мастер должен стать на резиновый коврик и проверить всё защитное обмундирование.
  6. Сварку на конденсаторах может выполнять только высококвалифицированный опытный рабочий.
  7. При смене электродов или установке детали необходимо обеспечить защиту рук и глаз от воздействия высоких температур.
  8. Рабочее место должно быть огорожено со всех сторон. Такая мера предосторожности поможет избежать возгорания в случае отлетания капель горячего металла.
  9. Около сварочного аппарата нельзя хранить горючие и легковоспламеняющиеся материалы.
  10. Если работа выполняется в полностью закрытом помещении, то необходимо обеспечить хорошую вентиляцию для удаления вредных паров.
  11. При возникновении какой-либо неисправности следует сразу же приостановить процесс сварки и отключить аппарат от источника питания.

Конденсаторная сварка — это быстрый и простой способ качественно соединить две металлические детали. При правильном её проведении и соблюдении всех правил техники безопасности можно значительно упростить процесс и снизить риск получения серьёзной травмы.

Конденсаторная сварка по точечной, контактной и ударной технологии: устройство оборудования

Одним из главных видов контактной сварки, широко применяемой в промышленности, можно назвать конденсаторную сварку. Правила ее проведения регламентирует ГОСТ.

Ее принцип основан на разряде, накопленного на блоке конденсаторов электрического заряда на соединяемые изделия. В точке соприкосновения электродов происходит разряд и формирование краткой электрической дуги, достаточной для расплавления металла.

Разделение на виды

Конденсаторная сварка наибольшее распространение получила в приборостроении. Она способна сваривать металлы до 1,5 мм, причем толщина второй детали может быть значительно больше. В сварке тонких изделий по экономичности, производительности и качеству у конденсаторной сварки конкурентов нет.

Она бывает трансформаторная и бестрансформаторная. В первом варианте на конденсаторах можно накопить большую энергию за счет использования высокого напряжения и разряда через понижающий трансформатор с большими токами. Второй вариант отличается простотой и минимумом деталей.

В зависимости от особенностей образования шва конденсаторную сварку подразделяет на:

  • точечную;
  • шовную;
  • стыковую.

Первый, точечный способ, в основном применяется в приборостроении и производстве электронной техники. Его активно используют для сваривания тонких деталей с толстыми.

Шовная сварка, ее еще называют роликовой, используется при сваривании мембран и электровакуумных приборов. Сплошной, герметичный шов получается за счет того, что точечные соединения производятся с перекрытием. Роль электродов выполняют вращающиеся ролики.

Стыковую сварку осуществляют оплавлением или сопротивлением. При первом способе сначала возникает разряд между свариваемыми деталями, место будущего соединения оплавляется под действием образовавшейся дуги, а потом они осаживаются, после чего происходит соединение металлов. Во втором случае разряд и последующее сваривание происходит в момент соприкосновения деталей.

Преимущества

Достоинством конденсаторной сварки является то, что из-за высокой плотности энергии и малой длительности сварочного импульса зона термического воздействия очень маленькая, напряжения и деформации минимальны. Оборудование простое и производительное.

За счет того, что в момент разряда конденсаторный блок отключен от сети, он никак не влияет на ее параметры. Единственным недостатком является то, что она применяется лишь при работе с тонкими металлами.

Другим достоинством емкостной сварки является ее компактность. Для конденсаторной сварки не нужны мощные источники питания, устройство может зарядиться между переносом электрода к следующей точке.

В процессе сваривания практически отсутствуют вредные газы. Устройство очень экономично, вся запасенная энергия идет на расплавление металлов в точке соединения. Благодаря тому, что заряд на конденсаторах постоянен, получается качественная и стабильная дуга.

Конденсаторная сварка позволяет сваривать цветные металлы малой толщины. Кроме этого она может соединять разнородные металлы и сплавы благодаря высокой концентрации энергии на маленькой площади.

Благодаря тому, что система конденсаторной сварки работает в дискретном режиме (сначала заряд, затем разряд), ей достаточно воздушного охлаждения, что упрощает устройство сварочного агрегата.

Емкостной сварочный аппарат применяется для соединения сталей всех видов, деталей из латуни, алюминия, бронзы. Он может сваривать разнородные металлы, тонкие с толстыми листами.

Возможность регулировки энергии разряда и длительности импульса позволяют производить микросварку, к примеру, в механизме часов. Конденсаторный аппарат может сваривать тугоплавкие вольфрамовые нити накаливания, применяется в ювелирном деле.

Технологические особенности

В зависимости от технологического процесса сварка конденсаторного типа бывает:

  • контактной;
  • ударной;
  • точечной.

При контактной сварке накопленная в емкости энергия разряжается на металлические детали, которые до этого были плотно соединены между собой. В месте прижима электродов возникает электрическая дуга, при которой ток доходит до 10-15 тысяч ампер при длительности дуги до 3 мс.

В случае ударной конденсаторной сварки разряд происходит в момент краткого удара электрода о заготовку. Длительность воздействия дуги 1,5 мс. Это снижает термическое воздействие на окружающую область и повышает качество сварки.

При конденсаторной сварке точечного типа дуга появляется между электродами и заготовками, находящимися между ними. Процесс разряда длится от 10 до 100 мс (зависит от установок), и соединение металлов происходит на маленькой площади.

Бестрансформаторный аппарат

Решив самостоятельно сделать аппарат для конденсаторной сварки, вначале выбирают вариант исполнения. Самый простой вариант – это бестрансформаторная схема. Ее можно реализовать с емкостями высокого или низкого напряжения.

В первом случае потребуется повышающий трансформатор и конденсаторы на 1000 В емкостью 1000 мкФ. Кроме этого потребуется высоковольтный диодный мост для выпрямления переменного тока, переключатель, электроды с соединительными проводами.

Сваривание происходит в два этапа. На первом этапе происходит зарядка емкости, на втором после переключения ее выводов на сварочные электроды и прикосновении их к месту сварки, происходит разряд, и детали соединяются. Протекающий ток доходит до 100 А, длительность импульса 5 мс. Этот вариант опасен для человека из-за высокого рабочего напряжения.

При втором варианте требуется понижающий трансформатор, батарея конденсаторов на напряжение до 60 В емкостью 40000 мкФ и более, диодный мост, переключатель.

Процесс сварки идентичен первому случаю только через точку сваривания проходят токи силой 1-2 кА и длительностью до 600 мс. Мощность трансформатора особого значения не имеет, она может быть 100-500 Вт.

Трансформаторная схема своими руками

При использовании трансформаторной схемы потребуется повышающий трансформатор и диодный мост для зарядки на 1 кВ, конденсаторы на 1000 мкФ и понижающий трансформатор, через вторичную обмотку которого осуществляется разряд накопленного заряда в месте соединения заготовок.

При таком исполнении сварочного аппарата точечной сварки длительность разряда составляет 1 мс, а ток доходит до 6000 А. После зарядки блока конденсаторов переключателем они подключаются к первичной обмотке понижающего трансформатора. Во вторичной обмотке индуцируется ЭДС, которая вызывает огромные токи при замкнутых электродах на соединяемых заготовках.

Качество сваривания будет сильно зависеть и от состояния электродного блока. Самый простой вариант представляет собой зажимы для фиксации и прижатия контакторов.

Но более надежна конструкция, где нижний электрод неподвижен, а верхний с помощью рычага может прижиматься к нижнему. Он представляет собой медный пруток диаметром 8 мм и длиной 10-20 мм закрепленный к любому основанию.

Верхняя часть прутка закругляется для получения надежного контакта со свариваемым металлом. Аналогичный медный стержень устанавливается на рычаге, при опускании которого электроды должны плотно соединяться. Основа с нижним электродом изолируется от верхнего рычага. Вторичная обмотка соединяется с электродами проводом 20 мм2.

Первичная обмотка наматывается ПЭВ-2 0,8 мм, количество витков равно 300. Вторичная обмотка из десяти витков наматывается проводом 20 мм2. В качестве магнитопровода можно применять сердечник Ш 40 толщиной 70 мм. Для управления зарядом/разрядом применяется тиристор ПТЛ-50 или КУ202.

Подготовка деталей

Перед началом конденсаторной сварки необходимо подготовить детали, которые предстоит соединить. С них счищают ржавчину, окалину и прочих загрязнения.

Заготовки совмещают должным образом и потом помещают между нижним неподвижным электродом и верхним подвижным. Затем они сильно сдавливаются электродами. Нажимая пусковую кнопку, подают электрический разряд.

В месте соприкосновения электродов происходит сварка металла. Разжимать электроды нужно через некоторое время, необходимое для остывания и кристаллизации места сваривания под давлением.

После этого деталь перемещается, за это время устройство успевает зарядиться, и процесс сварки повторяется. Размер места сварки должен быть в 2-3 раза больше наименьшей толщины соединяемых заготовок.

Когда нужно приварить лист до 0,5 мм толщиной к другим деталям независимо от их толщины, можно применить упрощенный способ сварки. Один электрод с помощью зажима присоединяется к свариваемой толстой детали в любом удобном месте.

В том месте, где нужно приварить тонкую деталь, она прижимается вручную вторым электродом. Можно использовать автомобильные зажимы. Затем производится сварка. Как видно, процесс не слишком сложный, и доступный для домашних условий.

схема и описание, как сделать своими руками

На сегодняшний день разработано множество способов сваривания разных видов металла, в результате которых можно получить прочный и ровный шов. К одному из таких относят конденсаторный сварочный процесс. Он приобрел популярность в прошлом веке, относится к разновидности контактной сварки.

Конденсаторная сварка пользуется высокой популярностью в промышленности, также его часто применяют в бытовых условиях. При помощи него можно производить сваривание мелких деталей, которые выполнены из алюминия, меди. Но все же перед тем как приступать к выполнению этой технологии стоит рассмотреть важные особенности и характеристики.

Что это такое

Конденсаторная контактная сварка появилась еще в 30-х годах ХХ века. И с тех пор она приобрела широкую известность в разных областях производства. Во время технологии производится бесшовное сваривание компонентов из металлической основы. Оно происходит благодаря кратковременным импульсам электрической энергии.

В настоящее время часто применяется на предприятиях для сваривания разных металлических элементов небольшого размера. В связи с тем, что она имеет простую технологию к ней прибегают умельцы в бытовых условиях.

Зачастую этот метод сваривания применяется в ремонтных цехах, где производятся и ремонтируются кузовные части транспортных средств. При конденсаторном сваривании во время создания шва не происходит прожигания и деформирования тонких стенок листов металлических заготовок. В последующий период деталям не потребуется дополнительное рихтование.

Конденсаторная точечная сварка используется в радиоэлектронике для соединения элементов, которые невозможно запаять при помощи обычных флюсов. Оборудование применяется в ювелирной области для производства и ремонта мелких элементов украшений.

Эта технология нашла применение на заводах по изготовлению шкафов коммуникационного типа. Также этот метод задействуют при производстве:

  • приборов, которые применяются в лабораториях;
  • элементов медицинского оборудования;
  • компонентов оборудования, которое применяется в пищевой промышленности.

Особенности

Конденсаторная сварка своими руками позволяет осуществлять сваривание изделий из цветных металлов в домашних условиях. Это связано с ее легкой технологией и простым проведением. А в производстве данный способ является просто необходимым условием при ремонте и изготовлении важных конструкций, оборудования.

Востребованность конденсаторного сварочного процесса связана со следующими положительными особенностями:

  • аппарат конденсаторной сварки обладает простой конструкцией, поэтому при желании его можно собрать самостоятельно;
  • точечный сварочный процесс отличается низкой энергоемкостью и небольшими нагрузками, оказываемыми на электросеть;
  • этот метод сваривания имеет высокую производительность;
  • во время сварки снижается термическое воздействие на соединяемые поверхности. Благодаря этому можно соединять небольшие металлические элементы;
  • этот метод может работать с конструкциями, у которых очень тонкие стенки. А вот при проведении других сварок они сильно деформируются.

Стоит отметить! Главное достоинство конденсаторного сварного процесса состоит в простоте его проведения. Качественные и прочные швы смогут выполнить даже неопытные сварщики.

В основе схемы конденсаторной сварки лежит изменение энергии электрических зарядов, которые скапливаются на конденсаторах, в состояние тепловой энергии. Когда электроды соприкасаются, возникает разряд, и все это приводит к образованию электрической дуги краткого действия. Благодаря выделяемому теплу металлические кромки расплавляются, и в результате образуется сварной шов.

При проведении конденсаторного сварочного процесса наблюдается подача тока на область сварного электрода. Они имеет вид кратковременного импульса с высоким показателем мощности. Он образуется за счет установки в сварочные приборы конденсаторов с большим объемом емкости.

Все эти особенности конденсаторного сварочного процесса позволяют сварщику добиться следующих положительных условий:

  • на термическое нагревание изделий из металла требуется гораздо меньше времени. Это представляет особую ценность для производителей электронных деталей;
  • ток, который применяется для соединения элементов, имеет высокую мощность. Именно за счет этого свойства швы получаются прочными и ровными.

Принцип

Самодельная конденсаторная сварка является востребованной технологией, которая позволяет быстро проводить соединение разных небольших деталей в домашних условиях. Она имеет простое проведение, поэтому ее могут применять даже новички и специалисты среднего класса.

Работа точечной сварки из конденсаторов основывается на следующих особенностях:

  1. При сварке заготовки зажимаются при помощи двух электродов, на которые поступает кратковременный ток.
  2. Затем между ними образуется дуга, она прогревает металл, что приводит к его расплавлению.
  3. Сварочный импульс начинает действовать через 0,1 секунды. Он образует общее ядро расплавки для всех элементов заготовок, которые свариваются.
  4. Даже после того, как перестает действовать импульс, детали дальше сжимаются от давления.
  5. В итоге образуется прочный и ровный шов.

Разновидности

Всего выделяют несколько типов конденсаторной сварки. Каждый из них имеет определенные особенности и позволяет выполнять некоторые важные задачи. Перед тем как приступать стоит рассмотреть основные нюансы каждого метода.

Точечная

Точечная сварка на конденсаторах осуществляется по принципу контактной технологии. Во время ее проведения создается короткий импульс тока, который быстро расплавляет металл и сваривает элементы.

Эта разновидность сварки считается популярной. Ее применяют во многих отраслях производства. Конденсаторная точечная сварка может проводиться в бытовых условиях своими руками. При помощи этого способа можно сварить компоненты с разным показателем толщины.

Роликовая

Роликовый конденсаторный сварочный процесс производится по тому же принципу, что и точечная технология, но готовые «точки» частично перекрываются между собой. Соединение обладает герметичной структурой, через него не проходит влага и частички пыли.

Обратите внимание! Роликовая сварка с использованием конденсаторов применяется в промышленности. Но особенно часто к ней прибегают при производстве изделий вакуумного и мембранного типа.

Ударная

Ударно-конденсаторная сварка осуществляет сваривание отдельных металлических компонентов, которые формируют цельную конструкцию. Электричество поступает к месту сваривания, оно имеет вид кратковременного удара. Данная технология уменьшает длительность сварных операций до 1,5 м/с.

Как собрать сварное оборудование

Совсем не обязательно приобретать дорогое оборудование его можно сделать своими руками. Если соблюдать все правила и нюансы, то готовая самодельная контактная сварка на конденсаторах выйдет ничем не хуже оригинала, но это позволит существенно сэкономить финансы.

Чтобы сделать конденсаторный сварочный аппарат своими руками стоит подготовить следующие компоненты:

  • трансформатор на 220 вольт. Устройство должно иметь мощность 5-20 Вт, а показатель выходного напряжения должен составлять 5В;
  • диодные компоненты выпрямительного типа с прямым током — 4 штуки. Показатель мощности — не меньше 300 мА;
  • тиристор. В качестве аналога подойдет прибор Т142-80-16, КУ 202 и похожие устройства;
  • конденсаторы электролитические;
  • резистор переменного типа на 100 Ом;
  • трансформатор с мощностью 1000 Вт. Подходящим вариантом будет устройство от микроволновок;
  • электроды;
  • провод из меди с сечением не меньше 35 мм.кв. — 1 метр;
  • переключательные компоненты, предохранители, корпус по желанию.

Чтобы сделать конденсаторную сварку своими руками потребуется схема и описание процесса. Ниже на картинке изображена схема конденсаторного сварочного аппарата, которая потребуется при его сборке.

Главное все собирать четко по схеме. Если все будет выполнено правильно, а все детали будут исправными, то проблем с работоспособностью самодельного сварного оборудования возникнуть не должно. Но все же трудности могут возникнуть с трансформатором. Как было указано выше, можно использовать прибор от микроволновки, его можно недорого купить на рынке с использованными элементами.

В этом деле может потребоваться схема конденсаторной сварки ударного типа от Aka Kasyan.

Однако перед тем как устанавливать, трансформатор переделывается:

  1. Обязательно удаляются магнитные шунты, убирается вторичная обмотка.
  2. На свободную область место наматывается 2-5 витков вторичной обмотки. Для этих целей применяется толстый провод из меди.
  3. При настройке число витков меняется.

Особенности сборки

Схема конденсаторной сварки, собранной своими руками требует соблюдения важных принципов. Важно чтобы все было выполнено строго по алгоритму, только так можно получить качественное и исправное оборудование.

Особенности сборки и работы прибора:

  1. На начальном этапе сварочные разряды тока должны поступать на область первичной обмотки трансформаторной катушки. Также они должны доходить до диодного моста.
  2. После на мост поступает сигнал от тиристора. Но перед этим данный элемент необходимо подключить к кнопке, которая подает импульс.
  3. Чтобы происходило скапливание сварочных импульсов, конденсаторные элементы встраиваются в цепь тиристора. Одновременно с этим конденсатор подключается к диодному мосту и к области первичной обмотки трансформатора.
  4. Во время включения самодельного оборудования с конденсаторами происходит накапливание электричества, исходящего из розетки. После этого нужно нажать на кнопку, а накопленное электричество в это время передвигается через резистор и тиристор, оно образует импульс.
  5. После импульс переходит на электрод. Как раз в этот момент требуется остановить подачу электричества к сварному прибору.

Это простая схема конденсаторной точечной сварки своими руками. При желании ее можно улучшить, модернизировать новыми и современными элементами. Но для бытовых условий вполне сойдет простое оборудование. При помощи него можно варить разные небольшие элементы из металла. При этом шов будет очень прочным и ровным.

Если вы решили сделать конденсаторную точечную сварку своими руками, то предварительно рассмотрите ее важные особенности и нюансы. Несмотря на то, что данная технология считается простой, она имеет важные принципы и правила, которые нужно учитывать при ее проведении. Не стоит забывать про принципы, виды и отличительные качества. Также, перед тем как приступать к сооружению самодельного аппарата для сварки, стоит подготовить необходимые элементы.

Интересное видео

Конденсаторная контактная сварка для аккумуляторов своими руками — Moy-Instrument.Ru

Схема и описание контактной конденсаторной сварки для аккумуляторов

Конденсаторная сварка – это технология создания бесшовного соединения металлических изделий. Соединения осуществляется за счет кратковременных импульсов электрической энергии.

Отличительные особенности

Классический электродуговой метод подразумевает использование громоздкого оборудования, которое отличается сложностью конструкции. Соединение выполняется за счет температурного воздействия на поверхность, создаваемого постоянной электрической дугой.

Расплавленный металл и присадочный материал перемешиваются, после застывания образуется сварочный шов. В процессе выполнения работ сварщик подвергаются интенсивному воздействию ультрафиолета, который оказывает негативное влияние на организм человека.

В отличие от данного метода, конденсаторная сварка не вредит здоровью, поэтому для выполнения работ не требуется минимальный комплект средств индивидуальной защиты. Благодаря точности устройств, после соединения элементов на поверхности практически не остаются следы. Рациональное использование энергии позволяет сэкономить электричество.

Современная наука не располагает возможностями для создания массивных аппаратов, поэтому в настоящее время конденсаторная точечная сварка используется для соединения компактных элементов.

Принцип точечного способа

Технологический процесс соединения выглядит следующим образом:

  1. Две заготовки соединяют двумя проводниками, для создания замкнутой цепи.
  2. Конденсаторы накапливают необходимое количество энергии от питающей сети.
  3. На проводники поступает кратковременный заряд, под действием которого контактная область плавится, образуя соединения.

Далее процедура повторяется в той же последовательности.

Выполнение работ не требует применения каких-либо расходных материалов. Зона расплава состоит исключительно из сплава заготовок.

Требования

Для получения качественного результата необходимо соблюдать следующие требования:

  1. Длительность рабочего цикла не превышает 3 мс.
  2. Конденсаторы получают рабочий уровень энергии за короткий промежуток времени.
  3. В качестве предварительной подготовки выполняют очистку от загрязнений и обезжиривание поверхности.
  4. На роль электродов лучше всего подойдут медные стрежни. Их толщина быть в три раза больше, чем самое тонкое место заготовки.
  5. В момент контакта соединяемые элементы должны быть плотно прижаты друг к другу. После разряда необходим небольшой промежуток времени, для кристаллизации соединения, поэтому электроды отсоединяют с небольшой задержкой.

Разновидности

Различают несколько технологических приемов для выполнения конденсаторной контактной сварки. Рассмотрим их подробнее.

Точечная

Метод предназначен для соединения изделий с разными габаритами, например тонкой проволоки и листа металла. Соединение выполняется за счет короткого импульса тока, накопленного в конденсаторах. Широко применяется в электротехнической промышленности.

Роликовая

В данном случае шов состоит из множества точечных соединений перекрывающих друг друга. Они обеспечивают полную герметичность. Сварку выполняют специальными электродами, непрерывно вращающимися вокруг своей оси. Основная сфера использования – производство приборов преобразования электромагнитной энергии.

Стыковая

Свое название получила благодаря возможности выполнять сварку проводов малого сечения стык в стык. Выполняется методом оплавления или сопротивления. В первом случае перед соприкосновением концы деталей оплавляются, под действием электрической дуги. Затем приступают к сварке. Во втором случае все действия выполняются в момент соприкосновения заготовок.

Преимущества и недостатки

К достоинствам аппаратов относят:

  • производительность работ;
  • возможно применение в промышленных и бытовых целях;
  • низкое энергопотребление;
  • простая конструкция;
  • длительный период эксплуатации;
  • точечное воздействие позволяет выполнить соединения без тепловой деформации изделия;
  • не требуется применение расходных материалов;
  • малые размеры позволяют свободно перемещать устройство самостоятельно.

Недостатков всего два:

  1. Малая мощность не позволяет соединять заготовки большого сечения.
  2. Эксплуатация аппарата вызывает помехи, которые нарушают функционирование рабочей сети.

Cвоими руками: схема простейшего прибора

Помимо работ промышленного назначения, точечную сварку часто используют в быту. Аппарат заводского производства стоит довольно дорого. На просторах интернета можно найти множества чертежей для самостоятельной сборки различного направления деятельности. Например, конденсаторная сварка для аккумулятора своими руками изготавливается из дипольной катушки и трансформатора с контактными триодами.

Рассмотрим схему и описание конденсаторной сварки своими руками, в которой для передачи импульсов используется трансформатор.

Схема устройства имеет следующий вид:

Для сборки понадобится:

  1. Конденсатор емкостью 1000 мкФ. Для накопления заряда.
  2. Ферритовый сердечник с Ш-образными пластинами для изготовления трансформатора.
  3. Медная проволока сечением 0,8 мм. Для первичной обмотки будет достаточно 3 витков.
  4. Медная шина. Будет использована для изготовления вторичной обмотки, которая должна насчитывать 10 витков.
  5. Тиристор типа КУ-202М. Для управления коммутацией напряжением.

Такой прибор будет с легкость справляться с элементами, толщиной до 0,5 мм.

Схема и описание более мощного устройства

Схема устройства для точечной сварки на конденсаторах, способной работать с изделиями большей толщины, имеет следующий вид:

Основу аппарата составляют 6 конденсаторов на 10000 мкФ, соединенные в единую батарею. В данном случае, в качестве ключей были использованы два тиристора 70TPS12, подключенные параллельно. Зарядка конденсаторов осуществляется с помощью повышающего преобразователя. Сопротивление резистора составляет 130 Ом.

Для визуального контроля над уровнем заряда имеется блок светового индикатора с 3 делениями.

Расчетная сила тока составляет 2000 А, а величина напряжения – 32 В.

Единственный недостаток данной модели – продолжительность зарядки конденсаторов, которая составляет 45 секунд.

Собранный аппарат не сможет приварить шпильку большого диаметра, однако вполне справится с проводом, сечением до 5 мм.

Обращаем внимание, что промышленные образцы изготовлены с соблюдением ГОСТов, регулирующих данную отрасль промышленности. В случае самостоятельных изобретений вся ответственность за возможные последствия ложится на конструктора.

Устройство контактного блока

Механизм для фиксации и перемещения электродов по рабочей плоскости называется контактным блоком. Примитивная конструкция подразумевает ручную регулировку контактов. В продвинутых моделях за надежность крепления отвечает блок из метизов.

В этом случае нижний стержень фиксируется в неподвижном положении. Его длина должна быть в диапазоне 10-20 мм, а сечение – не менее 8 мм.

Второй стержень крепят на подвижную площадку. Для регулировки давления устанавливают простейшие винты.

Порядок проведения работ

Рабочий процесс можно условно разделить на три этапа:

  1. Подготовка. Рабочая поверхность должна быть тщательно очищена от коррозии и масляных пятен.
  2. Рабочий цикл. Изделия стыкуют в нужно положении. После этого к ним подводят электроды. Заряд подается после нажатия пусковой кнопки.
  3. Изменение положения детали. В случае необходимости, изделие перемещают для нового точечного воздействия.

Применение готовых аппаратов

Для конденсаторных сварочных аппаратов нашлось множество применений:

  1. Автомобилестроение. Элементы кузова соединяют только посредством точечной сварки.
  2. Авиастроение. Данная отрасль отличается особыми требованиями к точности проведения работ.
  3. Приборостроение. Для соединения миниатюрных элементов, которые не должны подвергаться деформации.
  4. Строительство. С помощью данной технологии выполняют соединение тонколистовых металлов.
  5. Домашние работы. Приборы помогают в ремонте бытовой техники.

Заключение

Аппарат для конденсаторной сварки – это отличное устройство, способное соединять изделия, обладающие разной структурой. Его главные достоинства – простота и надежность при малых габаритах. В случае необходимости можно изготовить простой аппарат для бытовых нужд.

Схема и принцип работы самодельной конденсаторной сварки

Конденсаторная сварка является одним из видов контактной сварки, которую активно используют в промышленности, а также для выполнения сварных операций своими руками в быту.

Технологическая схема операции следующая: в конденсаторах при их зарядке от выпрямителя осуществляется накопление энергии, которая при разряде трансформируется в тепловую энергию.

С помощью этой энергии и осуществляется соединение кромок металлических изделий. Расскажем, как выполнить конденсаторную сварку своими руками: схема и описание технологии.

Конденсаторная сварка: что это такое

Конденсаторная сварка своими руками была разработана еще в 30-х годах XX века. Сегодня эта технология активно используется предприятиями промышленности и умельцами с целью выполнения бытовых сварных операций.

Особенно популярна такая технология в цехах ремонта кузовов транспортных средств: в отличие от дугового, при конденсаторном методе создания сварного шва не происходит прожигание и деформация тонких стенок листов кузовных деталей. В последующее время соединенным деталям кузова не нужна дополнительная рихтовка.

Такую технологию применяют в радиоэлектронике для соединения изделий, не паяющихся посредством обычных флюсов или выходящих из строя при перегреве.

Активно применяются аппараты конденсаторной сварки ювелирами при изготовлении и ремонте ювелирных украшений, на предприятиях, выпускающих коммуникационные шкафы, лабораторное, медицинское, пищевое оборудование, при строительстве зданий, мостов, инженерных коммуникаций.

Столь широкое распространение можно объяснить действием ряда факторов:

  • простая конструкция сварочного аппарата, который при желании можно собрать своими руками;
  • точечная сварка отличается относительно низкой энергоемкостью и малыми нагрузками, создаваемыми на электрическую сеть;
  • высокие показатели производительности, что крайне важно при серийном производстве;
  • возможность снизить термическое влияние на соединяемые поверхности, что позволяет сваривать детали малых размеров и работать с теми конструкциями, стенки которых чрезмерно тонки и могут деформироваться при обычной сварке.

Правила осуществления сварных операций с помощью энергии конденсаторов регламентируются ГОСТ. Принцип технологии основывается на трансформации энергии электрического заряда, накопленного на конденсаторах, в тепловую энергию.

При соприкосновении электродов происходит разряд и образуется электрическая дуга краткого действия. За счёт выделяемого ею тепла кромки соединяемых деталей из металла плавятся, образуя сварной шов.

При конденсаторной сварке ток подается на сварной электрод в виде кратковременного импульса высокой мощности, который получается за счет монтажа в оборудование конденсаторов большой емкости.

В случае использования контактной сварки ток непрерывен. В этом заключается основное отличие этих видов выполнения сварных операций.

В итоге, мастер может достичь высоких показателей двух важных параметров:

  • на термический нагрев соединяемых деталей требуется гораздо меньше времени, что особенно ценно для производителей электронных компонентов;
  • ток, используемый для соединения деталей, обладает высокой мощностью, поэтому и сами сварные швы получаются более качественными.

В процессе сварных операций для крепления элементов и узлов разных изделий могут потребоваться разные по разновидности и назначению шпильки.

Достоинством конденсаторной сварки является возможность уменьшить площадь термического воздействия, снизить напряжение и свести к нулю риск деформации поверхностей ввиду высокой плотности энергии и кратковременности сварного импульса. Технология позволяет работать с цветными металлами с малой толщиной.

Также отметим, что огромным плюсом конденсаторного сварного аппарата является его компактность. Для применения такой технологии на практике не потребуется мощный источник питания, устройство можно заряжать между переносом электрода к следующей точке.

Выполняем конденсаторную сварку своими руками

Контактная сварка применяется сварщиками, поэтому купить заводской аппарат для ее выполнения несложно.

Модели, в отличие от агрегатов для точечной сварки, отличаются простой конструкцией, несложным управлением и стоят недорого, но многие умельцы все же принимают решение, собрать сварной аппарат конденсаторного типа своими руками. Это позволяет сэкономить деньги, реализовать собственный талант.

Выполнения данного задания требует от мастера следующего:

  • найти в интернете нужную схему и подробное описание конструкционных особенностей агрегата;
  • уяснить механизм работы устройства;
  • подобрать актуальные материалы и приспособления: шпильки приварные, сварные электроды и т.п.

Механизм функционирования аппарата для конденсаторной сварки:

  • ток направляется через первичную обмотку питающего трансформатора, выпрямитель, представленный диодным мостом;
  • на диагонали моста осуществляется подача управляющего сигнала тиристора с кнопкой запуска;
  • в цепи тиристора вставлен конденсатор для накопления сварного импульса, который также нужно подключить к диагонали выпрямителя и первичной обмотке трансформаторной катушки.

Соединение участков металлических конструкций осуществляется при сильном электрическом влиянии, накопленном в двухполюсниках, а сам процесс делится на три категории:

  1. Контактная сварка.
    Предполагает плотное прижатие заготовок друг к другу с последующим соприкосновением электродов к данному месту. Энергия, подающаяся на ограниченное пространство настолько велика, что это приводит к быстрому расплавлению и дальнейшему прикреплению кромок деталей.
  2. Ударная технология.
    Также предполагает соединение отдельных деталей из металла в единую конструкцию, но электричество подается к месту сваривания в виде кратковременного удара. Такая технология позволяет уменьшить продолжительность сварной операции до 1,5 м/с;
  3. Точечная техника.
    При использовании такого вида сварки потребуется два медных контакта, касающиеся объекта с двух граней. В результате изделия скрепляются в точке прикосновения к электроду.

С ее помощью на стенку конструкции приваривается специальная шпилька для конденсаторной сварки, а уже на нее фиксируют прибор. Шпильку помещают напротив основного металла и настраивают оборудование для выполнения операции приварки.

Дуга плавит основание шпильки и соответствующую ему площадь основного металла, после чего изделие вводят в сварную ванну и фиксируют на поверхности до тех пор, пока металлы не остынут. На выполнение такого шва потребуются миллисекунды, но он будет надежен и долговечен.

Схема при конденсаторной сварке

Конденсаторная точечная сварка своими руками легко выполняется даже малоопытным сварщиком.

Ее основа ‒ электрическая схема с применением конденсаторов:

  1. Первичная обмотка проводится через выпрямитель, представленный диодным мостом.
    Затем она подключается к источнику напряжения.
  2. Тиристор подает сигнал на мостовую диагональ и управляется кнопкой запуска.
    Конденсатор подключается к сети тиристора, диодному мосту и выводится на первичную обмотку.
  3. Зарядить конденсатор можно путем, включения вспомогательной цепи с выпрямителем и трансформатором.

Конденсаторная сварка аккумуляторов своими руками осуществляется в следующей последовательности действий со стороны мастера:

  • нажатие пусковой кнопки, запускающей временное реле;
  • включение трансформатора при помощи тиристоров, после реле отключается;
  • использование резистора с целью определения длительности импульса.

Требования к конденсаторной сварке

Сварные конденсаторы применяются в промышленном масштабе и в условиях небольших мастерских. В любом варианте нельзя нарушать технологию сварки для аккумуляторов своими руками, иначе сварные швы получаться низкокачественными.

Соблюдение следующих условий позволит получить действительно качественный результат работы:

  • обеспечьте подачу кратковременного импульса в течение временного промежутка до 0,1 с, а также последующее накопление энергозаряда от источника питания для нового импульса за максимально краткое время;
  • позаботьтесь о хорошем контакте свариваемых деталей путем достаточного давления электрода на детали в момент подачи сварочного импульса;
  • разжимание электродов производите с задержкой, дабы расплав остывал под давлением и улучшался режим кристаллизации металла сварного шва;
  • диаметр точки, образуемой на металле от контакта с электродом, должен быть крупнее, нежели самая тонкая свариваемая заготовка в 2 раза;
  • тщательно очистите поверхность свариваемых заготовок перед сваркой, дабы окисные пленки и ржавчина не спровоцировали существенное сопротивление для тока.

Конденсаторную точечную сварку осуществлять своими руками можно только при условии сборки агрегата с минимум двумя блоками: источником сварного импульса и сварочного блока. Также крайне важно предусмотреть возможность регулировки режима сварки и защиты.

Особенно важно придерживаться правил безопасной работы со сварным аппаратом, которые предполагают следующие пункты:

  • для защиты глаз от искр от сварного аппарата надевают специальную маску;
  • обезопасить кожу рук от ожога помогут перчатки, а тело – специальный защитный комбинезон;
  • на ноги сварщика надевают ботинки с подошвой из плотного материала, не позволяющего повредить пальцы и ступню при работе.

Конструкции контактного блока

Контактный блок конденсаторной сварки ответственен за фиксацию и перемещение сварных электродов. В большинстве случаев фиксация обоих стержней осуществляется вручную.

Более качественный вариант обеспечивает надежную фиксацию нижнего стержня, но оставляет подвижным верхний стержень. В данном случае верхний медный прут закрепляется так, чтобы он свободно двигался в вертикальной плоскости. А нижний ‒ оставляют в неподвижном состоянии.

Также на верхней части монтируют регулятор винтового образца, позволяющий создавать дополнительное давление. Главное, чтобы верхняя площадка и основание энергоблока имели хорошую изоляцию друг от друга. Некоторые модели сверху оснащены фонарем, что делает работу более комфортной.

При конструировании конденсаторной сварки своими руками потребуется иметь следующие детали:

  • конденсатор, емкостью 1000-2000 мкФ, мощностью 10 В, напряжением 15;
  • трансформатор требуемого размера ‒ 7 см, произведенный из сердечника типа Ш40;
  • первичная обмотка, сделанная из трехсот слоев провода с диаметром 8 мм;
  • вторичная обмотка из десяти обмоток медной шины;
  • пусковик серии МТТ4К, включающий параллельные тиристоры, диоды и резистор.

Особенности работы самодельного агрегата

Осуществить ударную конденсаторную сварку можно с помощью специального аппарата заводского производства, который продается в специализированных магазинах. Однако, вполне реально изготовить сварку конденсаторного типа самостоятельно в условиях маленькой мастерской.

Изготовленные своими силами агрегаты демонстрируют высокие эксплуатационные параметры и в работе не уступают заводским моделям.

Перед работой самодельному аппарату для сварки, использующему энергию конденсаторов, задают основные параметры функционирования:

  • напряжение в зоне контактной сварки металлоизделий;
  • вид и сила тока;
  • длительность действия сварного импульса;
  • число и размеры сварной проволоки, применяемой в работе.

Платы управления, присутствующие в конструкции и заводских, и самодельных сварочных агрегатов, предоставляют мастеру возможность привести поступающее напряжение и постоянную величину тока к стабильному значению. Самодельный агрегат важно оснастить переключателем для выполнения сварки электродами без особенных трудностей.

Самодельные агрегаты, как и заводские модели, долговечны, просты в использовании, если при их конструировании придерживаться схемы, технологических требований и норм безопасности.

А технические параметры изготовленной своими силами модели должны соответствовать характеристикам заводских конструкций. Тогда аппарат позволит даже малоопытному сварщику выполнять надежные и долговечные сварные швы методом конденсаторной сварки.

Такие дефекты могут свести на нет усилия сварщика, став преградой для качественного соединения расплавленных кромок изделий.

Подведем итоги

Конденсаторная сварка актуальна при необходимости соединить детали из цветных металлов в единую конструкцию.

Технология имеет ряд достоинств, среди которых особенно ценна возможность уменьшить площадь термовоздействия, снизить напряжение и устранить риск деформации металлоповерхностей. Аппара

Легкий и мощный инвертор для контактной сварки своими руками

Доброго времени суток, уважаемые самоделкины!

В данной самоделке AKA KASYAN показывает подробности изготовления аппарата контактной сварки.

Аппарат инверторного типа. Но само устройство весьма непростое (в плане режима работы).

У автора возникла потребность приварить никелевые пластины к литиевым аккумуляторам.

Именно эта проблема и явилась стартером данного проекта.

Многие самоделкины знакомы с устройствами контактной сварки, которые представляют из себя громоздкий трансформатор, во вторичной обмотке которого намотано несколько витков медной шины или провода.

Обычно их делают на базе трансформатора от микроволновой печи.

Чтобы получить высокие токи сварки в несколько сотен, а иногда и тысяч ампер.

Пример китайского сварочного аппарата. Максимальный ток 500А. Приобрести — пара сотен баксов.


А вот и авторский сварочник, при его небольшом весе в 200гр способен кратковременно создавать токи 200 — 220 ампер.

Инверторный режим работы в данном классе устройств немного необычен. Для контактной сварки такую технологию применяют редко. В своем варианте исполнения автор задействует простую в реализации импульсную схему.

Вот так она жжет!

Бонусом является низковольтное питание устройства. Данный аппарат Вы сможете подключить к источникам постоянного тока (например обычного компьютерного блока питания).

При использовании 12В аккумулятора — вообще получится автономная и портативная сварка. Диапазон питающих напряжений — до 24 вольт.

Внешний вид аппарата на данный момент не очень. Он пока-что не обзавелся корпусом. (цитирую автора).
Автор собрал его для испытаний, засим на внешний вид не будем обращать внимание.

Если работа устройства устроит автора, то он запилит несколько доработок, в особенности касающиеся различных степеней защиты. Перегрев, передержка и в этом духе.

Судя по фотографиям — прожигает лезвие от ножа навылет. Значит контакт такой сварки не подлежит сомнениям.


Двухтактная схема является очень популярной. Автогенератор, о котором у автора есть множество роликов уже нет смысла пояснять принцип его работы.

В описании к видео есть ссылки на некоторые авторские видео с различными способами применения этой схемы.

Данная схема устройства создана при помощи сервиса EasyEDA.

Материалы и инструменты:

Два мощных полевых ключа



Импульсный трансформатор от компьютерного блока питания.

Конденсатор резонансный 1-2uF Х 300+ Вольт.


Включение устройства производится слабенькой кнопкой.

Паяльник, канифоль, припой, текстолит.
Медные провода.
Дроссель.

Частота работы прибора зависит от индуктивности первичной обмотки

и емкости резонансного конденсатора.

Удовлетворительный диапазон частот — от 20 до 50 кГц. Само собой, если ниже 20К то попадаем в слышимый диапазон частот.

Чем больше будет емкость конденсатора, тем выше ток в первичной обмотке.

Автор не советует устанавливать конденсаторы емкостью выше двух микрофарад.
Тогда частота работы устройства попадет в звуковой диапазон.
Это приведет к противному свисту трансформатора.
Транзисторы IRFP150, можно использовать и аналоги, с током от 40А и напряжением более 50В.


Автор рекомендует применять ключи в корпусе TO247. Можно и TO220.
К транзисторам прикрепляем небольшой радиатор. В виде пластинки.

Сами ключи обязательно изолируем от радиатора.
Дроссель просто необходим. Мотается в две полуторамиллиметровые жилы.


Количество витков в диапазоне от 10 до 30 штук.

Силовой импульсный трансформатор конфискован из классического компьютерного блока питания ATX 450Ватт.

Заводские обмотки удаляем. Для этого рекомендую нагреть его строительным феном.
Итак, перемотанная первичка состоит из двух петель по четыре витка каждая.

Наматывается жгутом 3-х проводов диаметром в 1 мм.

Суммарно квадратура первички должна составлять 2-4 квадрата. В принципе, можно мотать и из многожильного провода.


Сверху изолирует обмотку термостойким скотчем. Я бы делал лавсаном.

Вторичную петлю делает из медной шины 1,5мм Х 22мм


Медную ленту фиксирует эпоксидкой.

А к окончаниям обмотки припаивает клеммы,

Собственно в клеммы и вставляются одножильные 2-х миллиметровые медные электроды

Края электродов необходимо заострить.


Да, немного новшеств, вместо авторских медных электродов можно применить графитовые. Сделать их можно из строительного карандаша.

Корпус для автора пока не важен. После испытаний устройства корпус будет делаться из оргстекла или текстолита.

Посмотрим, на что способен агрегат.


Да уж, оторвать не получается.

Разве что лента рвется.

Питающие напряжения — от шести до 24 В. А это — автономность при наличии качественного аккумулятора с большим током на выходе.


Да хоть от шуруповерта аккум можно приколхозить.
Вопрос, возникающий у большинства читателей. Для чего же требуется схема, и почему нельзя варить прямо от аккумулятора? Ответ автора — схема понижает напряжение до 1,5 — 4В. Естественно и увеличивается ток сварки. А аккумулятор при работе на короткое замыкание — практически сразу превратится в хлам. Собственно это небезопасно.

Авторский вариант подходит по всем характеристикам.
Недавно автор изготовил похожий сварочный аппарат на основе конденсаторов.

Режимы работы устройства. На одну сварку — до двух секунд, после — перерыв 4 секунды.
Автор сжег несколько полевиков. Просто варил 5 секунд. Да и транзисторы были без охлаждающего радиатора.

Спасибо AKA KASYAN за проделанный труд!

Всем удачи и хороших идей!
Ссылка на оригинальное видео — под текстом кнопка «источник».


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Конденсаторная сварка

Технология сварки, основывающаяся на запасенной энергии конденсаторов, называется конденсаторная сварка. Она составляет отдельную группу среди контактных технологий создания прочных соединительных швов. Отличительным аспектом конденсаторной разновидности считается постепенное запитывание оборудования токами специализированной конденсаторной батареи. Время сваривания этим способом ограничивается тысячными частями секунды.

Распространенной сферой использования считается микроэлектроника, где требуется спаивание мельчайших микросхем и надежность проведения микроимпульсов.

Отличительные нюансы конденсаторного соединения заготовок

Сущность процесса сварки при помощи конденсаторных агрегатов заключается в выдаче кратчайших точечных воздействий, осуществляемых благодаря электроэнергии. Аккумулированная энергия при соприкосновении с предполагаемым местом соединения разряжается на заготовку, тем самым провоцируя сварочный процесс.

Конденсаторная сварка и схема разрядки подразделяется на два основных направления:

  1. Сварка с разрядкой непосредственно на имеющуюся заготовку.
  2. Альтернативный вариант с переходом импульсной энергии на обмотку.

Первый тип сварочных работ активно применяется для создания стыковых соединений тончайших стержней либо проволок. Причем метод поддерживает функциональность с разнородными по составам заготовками.

Схемой второго способа разрядки предусмотрено создание шовных соединений либо организацию точечных сварных процессов.

Главным отличительным свойством конденсаторного типа варки деталей считается экологичность этого процесса. Стандартное оборудование для выполнения подобных работ функционирует на высоком токе, что позволяет при относительно небольших импульсных затратах получать достаточно крепкие шовные соединения. Влияния на окружающую среду практически не возникает из-за минимальных затрат времени на работу.

Преимущества сварки

Каждая разновидность сварочных работ обладает собственными отличительными преимуществами, рассматривая конденсаторную сварку, выделяют следующие положительные характеристики:

  1. Скорость сварки весьма высокая. Получение конечного результата осуществляется за тысячные составляющие секунды.
  2. Минимальные энергетические затраты. Из-за точечного характера работы потребление энергии значительно снижается.
  3. Аккуратный результат. Лицевая сторона заготовки не подвергается видимым воздействиям и изменениям, что позволяет сохранить первозданный вид главной стороны и расширить функциональность детали.
  4. Поддерживается возможность соединения тончайших листовых заготовок.
  5. Простое выполнение всех работ. Покорить устройство конденсаторного типа под силу даже начинающему сварщику или любителю. Положительным аспектом выступает также необходимость работы исключительно с одной стороной заготовки.
  6. Экологическая составляющая. Благодаря минимальным активным промежуткам, за которые осуществляется соединение деталей, воздействие на среду сводится к минимуму.

Скоростная конденсаторная сварка своими руками по точечному принципу не деформирует металлические края заготовок, также не оказывает расплавляющего воздействия на них. Отличные результаты демонстрирует ударный метод конденсаторной сварки. Он применяется для скрепления цветных металлических заготовок со сплавами, имеющими похожую молекулярную основу. Итогом становится эстетический и одновременно надежный шов при низких временных затратах. Ударно конденсаторная сварка является перспективным методом работы с металлическими деталями, состоящими из цветных сплавов. 

Сфера применения

При перечисленных положительных аспектах этой технологии неудивителен факт широкого распространения метода конденсаторной сварки в различных сферах промышленности. Благодаря этому методу создания прочных соединений изготавливаются:

  1. Медицинское инновационное оборудование и передовые пищевые агрегаты.
  2. Корпуса различной электронной аппаратуры.
  3. Уникальные стеклянные сооружения и специализированные каркасы для конструкций из металлов.

Большое распространение конденсаторная точечная сварка получила среди частного строительства зданий. В промышленном использовании эта технология активно применяется для создания нестандартных каркасов значимых построек. Также невозможно обойтись без конденсаторного соединения при прокладке коммуникаций инженерного назначения, обустройства вентиляционных систем, соединения листовых металлических деталей.

Благодаря отличительным нюансам эту технологию применяют не только профессиональные сварщики, но также любители этого дела.

Сварочное оборудование

При точечном соединении заготовок применяется специальный аппарат конденсаторной сварки. Принцип работы этого устройства основывается на последовательном запасании энергии посредствам накопителя (конденсатора) и дальнейшей ее импульсной передаче на заготовку либо обмотку.

Возможность сварки в точечном конденсаторном режиме обеспечивает выпрямитель, задача которого сводиться к последовательной зарядке конденсаторных батарейных элементов. Накопленные энергетические импульсы моментально преобразуются в энергию тепла, благодаря которой и происходит спаивание деталей.

Для машины конденсаторной сварки характерны:

  1. Низкая потребляемая мощность. Благодаря непостоянству использования накопленных зарядов, больших электрических затрат удается избегать даже при крупных производственных работах.
  2. Высокая работоспособность. Система функционирует в автоматическом режиме, а поскольку скорость каждого отдельного соединения деталей практически мгновенная, то автоматизация существенно ускоряет достижение результата.
  3. Внедрение специализированного программного обеспечения. При создании на производстве постоянства начальных условий процесса, возможно, добиться выполнения всех сварочных операций с филигранной точностью и на автоматизме.

SPICE: основы моделирования, часть 1: Начало работы | EAGLE

Моделирование SPICE уже здесь! Autodesk EAGLE 8.4 предоставляет SPICE внутри компании, позволяя проектировать и моделировать в одном инструменте. Независимо от того, являетесь ли вы студентом или профессионалом, SPICE позволит вам точно предсказать поведение ваших электронных схем. В этом блоге мы рассмотрим, что такое симуляция SPICE для новичков и как запустить ваше первое интегрированное моделирование EAGLE.

SPICE 101

SPICE — это компьютерное моделирование, разработанное в Калифорнийском университете в Беркли.Это одна из наиболее широко используемых программ моделирования, которая позволяет инженерам моделировать поведение схем. Зачем вообще моделировать? Проверяя, как схема будет работать в действии, вы сможете выявить ошибки на ранних этапах процесса проектирования, прежде чем они проявятся в ваших прототипах.

Моделирование

SPICE делает это за счет использования моделей SPICE и списка соединений. Список соединений определяет, как выводы подключены на вашей схеме. Модели содержат текстовые описания значений компонентов, которые затем могут использоваться механизмом SPICE для математического моделирования поведения.

SPICE-модель варакторного диода и всех его значений. (Источник изображения)

Модели для простых компонентов могут быть простыми однострочными описаниями. Сложные, состоящие из нескольких частей компоненты часто имеют модели с сотнями строк информации. Если вы не планируете использовать в EAGLE библиотеку, в которой уже есть части, совместимые со Spice, вам нужно будет загрузить модели SPICE самостоятельно. К счастью, есть множество производителей компонентов, которые предоставляют модели SPICE для загрузки на своем веб-сайте.Некоторые из самых популярных источников для ознакомления с моделями SPICE включают:

Продавец Описание
Аналоговые устройства Усилители и компараторы, аналого-цифровые преобразователи, цифро-аналоговые преобразователи, встроенная обработка и DSP, МЭМС и датчики, RF / IF-компоненты, переключатели / мультиплексоры, аналоговые микроконтроллеры, интерфейс, управление питанием и температурой
Койлкрафт Силовые магниты, РЧ-индукторы, фильтры EMI / RFI, широкополосные магниты
Направленная энергия Диоды, переключаемые полевые МОП-транзисторы, линейные ВЧ / УКВ-полевые МОП-транзисторы, ИС драйверов для полевых МОП-транзисторов
Infineon Technologies Волоконная оптика, микроконтроллеры, силовые полупроводники, дискретные устройства малой мощности
Кемет Конденсаторы для поверхностного монтажа из алюминия, керамики и тантала и свинцовые конденсаторы из керамики и тантала
Линейные технологии Обработка сигналов, преобразование данных, управление питанием, интерфейс, высокочастотные и оптические устройства
Максим усилители и компараторы, аналоговые переключатели и мультиплексоры, тактовые генераторы, счетчики, линии задержки, осцилляторы, RTC, преобразователи данных, выборки и хранения, цифровые потенциометры, оптоволокно и средства связи, фильтры (аналоговые), высокочастотные ASIC, горячая замена и мощность переключение, интерфейс и Interconnect, Memories: Летучие, NV, многофункциональное, Термальное управление, датчики, датчик Кондиционеры, Источники опорного напряжения, Wireless, RF и кабель
ON Semiconductor Управление питанием, усилители, компараторы, аналоговые переключатели, тиристоры, диоды, выпрямители, биполярные транзисторы, полевые транзисторы, стандартная логика, дифференциальная логика,
СТМикроэлектроника Усилители и ИС линейных, аналоговых и смешанных сигналов, диоды, фильтрация и кондиционирование электромагнитных помех, логика, переключатель сигналов, память, микроконтроллеры, управление питанием, устройства защиты, датчики, микросхемы смарт-карт, тиристоры и переключатели переменного тока, транзисторы
Техас Инструментс Буферы, драйверы и трансиверы, триггеры, защелки и регистры, вентили, счетчики, декодеры / кодеры / мультиплексоры, цифровые компараторы
Вишай Производитель аналоговых переключателей, конденсаторов, диодов, индукторов, интегрированных модулей, силовых ИС, светодиодов, силовых полевых МОП-транзисторов, резисторов и термисторов.

При поиске моделей SPICE помните, что есть разница между PSpice и SPICE. PSpice — это проприетарный симулятор, принадлежащий Cadence, и многие модели PSpice несовместимы со стандартными симуляторами SPICE. Чтобы избежать путаницы, всегда загружайте модели SPICE3 (последние 3f5) или SPICE2, поскольку все они являются версиями старого доброго Berkeley SPICE.

Моделирование SPICE в EAGLE

Симулятор SPICE в EAGLE использует Ngspice, преемник SPICE 3f5 с открытым исходным кодом.Если вы знакомы с другими инструментами SPICE, то концепции и работа с симулятором в EAGLE будут вам хорошо знакомы.

SPICE полностью интегрирован в Autodesk EAGLE 8.4, и нет необходимости устанавливать какое-либо дополнительное программное обеспечение. Мы также отправили кучу готовых к использованию моделей SPICE и примеров проектов, с которыми вы можете поработать. В течение нашего времени в этой серии SPICE мы будем работать с четырьмя доступными типами моделирования в EAGLE, которые включают:

  • Анализ переходных процессов .Этот метод имитирует работу схемы с течением времени, когда ток проходит через каждый компонент вашей схемы.
  • Развертка по постоянному току . Этот метод анализирует взаимосвязь между напряжением и током в заданном диапазоне для входного источника постоянного тока.
  • Свип переменного тока . Этот метод анализирует изменения напряжения и тока в заданном диапазоне частот для входного источника переменного тока.
  • Рабочая точка . Этот метод анализирует напряжение и ток для одного или нескольких компонентов в цепи в один момент времени.Вы даже можете извлекать и анализировать определенные параметры компонентов.

Теперь, когда у нас есть все основы, давайте рассмотрим некоторые из новых функций SPICE в EAGLE.

Путь к симулятору

Посмотрите на параметры каталога для EAGLE (Параметры »Каталоги на Панели управления), и вы заметите новый каталог пути симулятора внизу. В этом каталоге находится симулятор SPICE, а также здесь есть полезная документация и примечания к выпуску.

Когда EAGLE запускает симулятор SPICE, он обращается к этому каталогу, чтобы найти исполняемый файл Ngspice. Вам не нужно будет изменять этот путь к каталогу, если вы не используете более продвинутые симуляторы.

Еще одна вещь, на которую стоит обратить внимание, это то, что Ngspice имеет массу возможностей для моделирования вне EAGLE. Это означает, что вы можете использовать симулятор Ngspice прямо из командной строки для множества других целей. Обратитесь к Руководству пользователя Ngspice для получения дополнительной информации.

Библиотека Ngspice

Мы включили удобную управляемую библиотеку Ngspice, которая содержит набор частей, готовых к моделированию.Здесь есть все, от базовых пассивных компонентов, таких как резисторы и диоды, до более сложных компонентов, таких как BJT-транзисторы, источники, управляемые напряжением, и многое другое. Чтобы проверить все части в этой библиотеке, откройте диалоговое окно «Добавить» и найдите список ngspice-Simulation.lbr .

Следует иметь в виду одну вещь: если вы не используете части из этой SPICE-совместимой библиотеки, вам нужно будет загрузить модели SPICE и сопоставить их с обозначениями схемы. Этот процесс выходит за рамки этого блога, и мы рассмотрим его в следующих статьях, но его относительно просто сделать с помощью кнопки Map в EAGLE.

Примеры проектов

Мы также включили несколько предварительно настроенных примеров схем, которые позволят вам быстро протестировать симулятор SPICE без необходимости настройки параметров. Чтобы найти эти примеры, откройте панель управления , разверните папку Project и найдите папку ngspice в разделе examples .

Все эти примеры проектов настроены для различных методов моделирования SPICE. Например, если вы откроете opamp1.сч, эта схема позволит вам быстро протестировать симуляцию свипирования переменного тока без какой-либо настройки. Когда вы откроете эту схему, вы заметите несколько новых кнопок моделирования SPICE в верхней части интерфейса. Вот что делает каждый:

Теперь, когда у нас есть ручка для всех новых кнопок и функций, следуйте инструкциям ниже, чтобы запустить ваше первое моделирование AC Sweep:

  1. Откройте пример opamp1.sch из папки ngspice example .
  2. Выберите кнопку Simulate в верхней части интерфейса.Это откроет диалог Simulation .
  3. AC Sweep уже должен быть выбран с определенными значениями, введенными для Start Freq и End Freq. Если они не настроены, выберите AC Sweep и введите 1 для начальной частоты и 10e6 для конечной частоты.
  4. Нажмите кнопку Simulate , чтобы запустить моделирование, и вы попадете на вкладку Plot .

Все методы моделирования, кроме одного (рабочая точка), покажут свои результаты на вкладке График.Здесь вы можете использовать курсор для перемещения влево / вправо по оси x графика для исследования значений. В этом случае перемещение влево / вправо отобразит точное значение частоты в правом верхнем углу.

Запуск SPICE на собственных схемах

Перед запуском моделирования SPICE на вашей схеме, все ваши части должны быть сопоставлены с моделями SPICE. Для завершения этого сопоставления у вас есть несколько вариантов:

  • Вы можете разместить в EAGLE части, которые уже совместимы со spice, из управляемой библиотеки ngspice -simulation .
  • Вы можете загрузить модели Spice от производителя компонентов, например Texas Instruments, а затем сопоставить эти модели с обозначениями схемы.
  • Вы можете создать свои собственные библиотеки, совместимые со Spice, которые включают создание схематического символа, присоединение модели SPICE и отображение ее контактов.

В этом блоге мы не будем рассказывать о тонкостях того, как отображать схематические символы на новые модели SPICE. Будьте в курсе будущих обновлений о том, как преобразовать существующую схему в схему, совместимую со SPICE.

Все пряности

Мы едва коснулись всех возможностей, которые SPICE может предложить для моделирования схем в EAGLE. Если вы хотите глубже погрузиться в тонкости Ngspice, взгляните на Руководство пользователя Ngspice. Autodesk EAGLE 8.4 закладывает основу для некоторых мощных технологий моделирования в будущем. В этом выпуске мы начали с основ, но ожидаем больше функций моделирования в будущем, поскольку мы продолжаем расширять SPICE в EAGLE!

Готовы начать моделирование ваших схем с помощью SPICE? Попробуйте Autodesk Eagle 8.4 сегодня!

«Основы электрических цепей» 6-е издание PDF Скачать

«Основы электрических цепей» 6-е издание «» Чарльз К. Александер и Мэтью Н. О. Садику | PDF Скачать бесплатно.

Основы электрических цепей PDF Содержание


  • Цепи постоянного тока.
  • Основные понятия.
  • Основные законы.
  • Методы анализа.
  • Цепные теоремы.
  • Операционные усилители.
  • Конденсаторы и индукторы.
  • Цепи первого порядка.
  • Цепи второго порядка.
  • Цепи переменного тока.
  • Синусоиды и фазоры.
  • Синусоидальный стационарный анализ.
  • Анализ мощности переменного тока.
  • Цепи с магнитной связью.
  • Частотная характеристика.
  • Расширенный анализ цепей.
  • Приложения преобразования Лапласа.
  • Ряд Фурье.
  • Преобразование Фурье.
  • Двухпортовая сеть.

Предисловие Основы электрических схем, 6-е издание


В соответствии с нашим акцентом на пространство для обложек нашей книги, мы выбрали космический корабль NASA Voyager для шестого издания.

Причина этого в том, что, как и в любом космическом корабле, существует множество схем, которые играют решающую роль в их функциональности.

Начало одиссеи «Вояджер-1» и «Вояджер-2» началось 20 августа 1977 г. для «Вояджера-2» и 5 сентября 1977 г. для «Вояджера-1».

Оба были запущены из Космического центра Кеннеди НАСА во Флориде. «Вояджер-1» был запущен на более быструю орбиту, поэтому в конечном итоге он стал первым искусственным объектом, покинувшим нашу Солнечную систему.

Есть некоторые споры о том, действительно ли он покинул Солнечную систему, но в какой-то момент это обязательно произойдет.»Вояджер-2″ и два космических корабля «Пионер» в какой-то момент также покинут солнечную систему.

«Вояджер-1» все еще функционирует и отправляет обратно данные, что является действительно значительным достижением для инженеров НАСА. Процессы проектирования, которые обеспечивают такую ​​надежность работы Voyager, основаны на основных принципах, обсуждаемых в этом учебнике.

Наконец, космос огромен, так что «Вояджер-1» пролетит мимо других солнечных систем; шансы действительно вступить в контакт с чем-то настолько малы, что он может виртуально летать сквозь вселенную навсегда!

Новое в 6-м издании «Основ электрических цепей»


Мы добавили цели обучения в каждую главу, чтобы отразить то, что, по нашему мнению, является наиболее важным из каждой главы.

Они должны помочь вам более внимательно сосредоточиться на том, что вы должны изучать. Есть более 580 пересмотренных задач в конце главы, новых задач в конце главы и пересмотренных практических задач.

Для чего нужна электрическая цепь? — Quora

Мы продолжаем стараться делать наши проблемы как можно более практичными. Кроме того, мы улучшили Connect для этого выпуска, значительно увеличив количество доступных проблем.

Теперь преподаватели могут выбирать из более чем тысячи задач, когда они создают свои онлайн-домашние задания.Мы также создали Smart Book для этого издания.

Благодаря адаптивной технологии Smart Book учащиеся получают тот же текст, что и печатная версия, а также персональные советы о том, что изучать дальше.

# Примечание. Если вы хотите купить эту электронную книгу в твердом переплете, щелкните здесь

Загрузите 6-е издание «Основы электрических цепей» в формате PDF бесплатно.

Схема и описание конденсаторной сварки

Существует несколько способов соединения металлических элементов швами, но среди всех особое место занимает конденсаторная сварка.Технология стала популярной примерно с 30-х годов прошлого века. Стыковка осуществляется путем подачи электрического тока в нужное место. Возникает короткое замыкание, которое позволяет металлу плавиться.

Преимущества и недостатки техники

Самое интересное, что конденсаторная сварка может применяться не только в промышленных условиях, но и в быту. Он предполагает использование небольшого устройства, которое имеет заряд постоянного напряжения. Такое устройство может легко перемещаться по рабочей зоне.

Из достоинств техники следует отметить:

  • высокую производительность работ;
  • долговечность используемого оборудования;
  • возможность комбинирования разных металлов;
  • низкий уровень тепловыделения;
  • отсутствие дополнительных расходных материалов;
  • точность стыковки элементов.

Однако бывают ситуации, когда применение конденсаторной сварки сварочным аппаратом для соединения деталей невозможно. В первую очередь это связано с кратковременной мощностью самого процесса и ограничением сечения согласованных элементов.Кроме того, импульсная нагрузка может создавать различные помехи в сети.

Особенности и специфика применения

Процесс соединения заготовок предполагает контактную сварку, для выполнения которой требуется определенное количество энергии в специальных конденсаторах. Его высвобождение происходит практически мгновенно (в течение 1 — 3 мс), за счет чего зона термического воздействия уменьшается.

Сварку конденсаторов своими руками проводить удобно, так как процесс экономичный.Используемый аппарат можно подключать к обычной электрической сети. Для использования в промышленности существуют специальные устройства большой мощности.

Особой популярностью пользовалась техника в цехах, предназначенная для ремонта кузовов автомобилей. В процессе работы тонкие листы металла не обжигаются и не деформируются. Исключается необходимость в дополнительном выравнивании.

Основные требования к процессу

Чтобы сварка конденсаторов проводилась на высоком уровне, необходимо соблюдать некоторые условия.

  1. Давление контактных элементов на обрабатываемые детали непосредственно в момент импульса должно быть достаточным для обеспечения надежного соединения. Разворачивание электродов следует производить с небольшой задержкой, что позволяет добиться лучшего режима кристаллизации металлических деталей.
  2. Поверхность соединяемых заготовок должна быть очищена от загрязнений, чтобы оксидные пленки и ржавчина не вызывали слишком большого сопротивления при воздействии электрического тока непосредственно на деталь. При наличии посторонних частиц эффективность технологии значительно снижается.
  3. В качестве электродов требуются медные стержни. Диаметр точки в зоне контакта должен быть не менее чем в 2–3 раза больше толщины свариваемого элемента.

Технологические приемы

Есть три варианта воздействия на заготовку:

  1. Конденсаторная точечная сварка в основном используется для соединения деталей с различным соотношением толщины. Он успешно применяется в области электроники и приборостроения.
  2. Роликовая сварка — это определенное количество точечных соединений, выполненных в виде сплошного шва.Электроды напоминают вращающиеся катушки.
  3. Ударная конденсаторная сварка позволяет создавать стыковые соединения элементов с малым поперечным сечением. Перед соударением заготовок образуется дуговый разряд, оплавляющий концы. После соприкосновения деталей проводится сварка.

Что касается классификации оборудования, то можно разделить технологию по наличию трансформатора. При его отсутствии упрощается конструкция основного устройства, а также основная масса тепла выделяется в зоне непосредственного контакта.Главное преимущество трансформаторной сварки — это возможность выделять большое количество энергии.

Конденсаторная точечная сварка своими руками: простейшая схема устройства

Для соединения тонких листов до 0,5 мм или мелких деталей может применяться простая конструкция, выполненная в домашних условиях. В нем импульс подается через трансформатор. Один из концов вторичной обмотки подводится к массиву основной части, а другой — к электроду.

При изготовлении такого устройства применяют схему, в которой первичная обмотка подключена к электрической сети.Один из его концов выводится через диагональ преобразователя в виде диодного моста. С другой стороны, сигнал поступает непосредственно с тиристора, которым управляет кнопка пуска.

Импульс в этом случае создается конденсатором емкостью от 1000 до 2000 мкФ. Для изготовления трансформатора можно взять сердечник Ш-40, имеющий толщину 70 мм. Первичная обмотка на триста витков легко может быть изготовлена ​​из провода сечением 0,8 мм с маркировкой PEW.Для управления подойдет тиристор с обозначением КУ200 или ПТЛ-50. Вторичная обмотка при наличии десяти витков может быть выполнена из медной шины.

Более мощная сварка конденсатора: схема и описание самодельного устройства

Для увеличения мощности измените конструкцию изготавливаемого устройства. При правильном подходе с его помощью можно соединять провода сечением до 5 мм, а также тонкие листы толщиной не более 1 мм. Для управления сигналом используется бесконтактный пускатель с маркировкой МТТ4К, рассчитанный на электрический ток 80 А.

Обычно тиристоры подключены параллельно, диоды и резистор подключены к блоку управления. Интервал переключения регулируется с помощью реле, расположенного в главной цепи входного трансформатора.

Энергия нагревается в электролитических конденсаторах, объединенных в одну батарею через параллельное соединение. В таблице вы можете увидеть необходимые параметры и количество элементов.

Кол-во конденсаторов

Емкость, мкФ

2

470

2

100

100

900

47

Обмотка главного трансформатора выполнена из 1.Провод 5 мм, а вторичный — из медной шины.

Работа самодельного устройства происходит по следующей схеме. При нажатии на кнопку пуска срабатывает установленное реле, которое с помощью тиристорных контактов включает трансформатор сварочного агрегата. Отключение происходит сразу после разрядки конденсаторов. Регулировка импульсного воздействия осуществляется с помощью переменного резистора.

Устройство контактного блока

Изготовленное устройство для конденсаторной сварки должно иметь удобный сварочный модуль, позволяющий фиксировать и свободно перемещать электроды.Самая простая конструкция предполагает удержание контактных элементов вручную. В более сложном варианте нижний электрод фиксируется в неподвижном положении.

Для этого на подходящем основании фиксируется длина от 10 до 20 мм и сечение более 8 мм. Верх контакта закруглен. Второй электрод прикреплен к платформе, которая может двигаться. В любом случае необходимо установить регулировочные винты, с помощью которых будет прикладываться дополнительное давление для создания дополнительного давления.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *