Глубина промерзания грунта в Подмосковье
Из данной статьи вы узнаете, что собою представляет понятие глубины промерзания грунта и почему его необходимо учитывать при проектировании фундаментов. Мы рассмотрим нормативные величины ГПГ для разных регионов России и узнаем, как определить фактическую и расчетную величину глубины промерзания почвы согласно действующим нормативам СНиП.
Оглавление:
Глубина промерзания грунта (ГПГ) — нормативное понятие, которое описывает среднестатистическую глубину, на которою почва промерзает в холодное время года.
Для расчета глубины промерзания берется среднестатистический показатель сезонного промерзания в конкретном регионе за последние 10 лет.
Рис. 1.0: Карта нормативной глубины промерзания почвы в разных регионах России
Уровень промерзания почвы — одна из основных величин, которые учитываются при проектировании фундаментов любого типа.
Важно учесть! Плитные и ленточные фундаменты, не обладающие достаточной глубиной заложения, отличаются чрезмерной подверженностью воздействиям морозного пучения почвы — они неустойчивы, подвержены деформациям и разрушениям.
Рис. 1.1: Характерный признак неправильно рассчитанной глубины заложение фундамента и, как следствие, повреждение здания под воздействием пучения грунта
Морозное пучение происходит в промерзших пластах почвы, пропитанных влагой. Грунтовые воды, при замерзании, склонны к увеличению своего объема на 2-9%, в результате такого расширения пропитанная водой почва начинает подниматься вверх и давить на фундамент здания, оказывая на него выталкивающее воздействие.
Важно! Чтобы избежать негативных влияний пучения, ленточные и плитные фундаменты должны закладываться ниже глубины промерзания почвы.
При таком расположении основание полностью лишено воздействия вертикальных сил пучения (выталкивающего давление почвы, находящейся под фундаментной лентой). Фундамент подвергается лишь касательному пучению (в результате трения стенок основания и боковых пластов пучинистой почвы), влияние которого можно устранить с помощью обустройства уплотняющей отсыпки по периметру стенок фундамента.
Рис 1.2: Схема промерзания участка застройки
Перед началом любого строительства, проводящегося на пучинистых грунтах, необходимо выяснить ГПГ в конкретном регионе, чтобы в дальнейшем иметь возможность подобрать оптимальную глубину заложения фундамента.
Внимание! Как неправильный расчет нагрузки на фундамент может привести к большим финансовым потерям: ссылка.
Глубина промерзания СНИП
ГПГ — величина, которую без наличия специального оборудования невозможно определить непосредственно перед началом строительства, поскольку ее расчеты требуют предварительного анализа конкретной местности на протяжении более чем 10-ти лет. В строительной практике, для определения глубины промерзания, используются нормативные данные о ГПГ и базовая информация для ее расчета, заложенная в документах СНиП.
До недавнего времени основным документом, в котором были приведены данные о глубине промерзания грунта, являлся СНиП № 20101-82 «Климатология и геофизика строительства», и сопутствующие ему карты разных регионов Российской Федерации.
Важное замечание! С недавних пор данный нормативный документ был разделен на две отдельные справки — СНИП № 20201-83 «Фундаменты зданий о сооружений» и СНИП № 2301-99 «Климатология строительства». |
В данный документах приведены среднестатистические показатели глубины промерзания почвы для конкретных регионов РФ, ознакомится с которыми вы можете в таблице 1.1
Город | Сезонная глубина промерзания разных видов почвы (см) | ||
---|---|---|---|
Глиняный грунт и суглинок | Супеси и мелкие сухие пески | Крупные и гравелистые пески | |
Ярославль | 143 | 174 | 186 |
Архангельск | 156 | 190 | 204 |
Челябинск | 173 | 211 | 226 |
Вологда | 143 | 174 | 186 |
Тюмень | 173 | 210 | 226 |
Екатеринбург | 157 | 191 | 204 |
Сургут | 222 | 270 | 290 |
Казань | 143 | 175 | 187 |
Саратов | 119 | 144 | 155 |
Курск | 106 | 129 | 138 |
Санкт-Петербург | 98 | 120 | 128 |
Москва | 110 | 134 | 144 |
Самара | 154 | 188 | 201 |
Нижний Новгород | 145 | 176 | 189 |
Рязань | 136 | 165 | 177 |
Новосибирск | 183 | 223 | 239 |
Ростов на Дону | 66 | 80 | 86 |
Орел | 110 | 134 | 144 |
Псков | 97 | 118 | 127 |
Пермь | 159 | 193 | 207 |
Таблица 1. 1: Нормативная глубина промерзания почвы в разных городах России
ГПГ зависит от двух основных факторов — среднестатистических минусовых температур в конкретных регионах и типа грунта.
Косвенным фактором, влияющим на ГПГ, является толщина снежного покрова, которым укрыт грунт — чем он толще, тем меньшей будет глубина промерзания. Стоит учитывать, что данные, указанные в нормативных таблицах СНИП, не учитывают толщину снежного покрова, поэтому фактическая величина ГПГ в регионе всегда будет меньшей, чем глубина, указанная в таблице 1.1.
Рис. 1.3: Схема зависимости ГПГ от толщины снежного покрова
Важное замечание! Всем домовладельцам, сталкивающимся с проблемой пучения почвы, стоит помнить о том, что они сами себе могут доставить дополнительных неприятностей, очищая снег и формируя сугробы возле стен дома.
Неравномерное пучение, которое происходит в местах, где почва обладает разной глубиной промерзания, крайне негативно сказывается на состоянии фундамента — из-за различных выталкивающих сил, воздействующих на фундаментную ленту, основание дома перекашивается, в результате чего возникают трещины на стенах и цоколе. Если вы очищаете снег вокруг постройки — делайте это по всем периметру здания, и не формируйте сугробы возле одной из стен дома.
Глубина промерзания грунта в Подмосковье
Как свидетельствуют отзывы опытных строителей, свыше 80% грунтов в Москве и области представлены пучинистой почвой — суглинком, глиной, песками, супесями. При строительстве домов на таких грунтах крайне важно учитывать глубину их промерзания, поскольку фундамент, заложенный выше требуемого уровня, не будет обладать ожидаемой от него надежностью и долговечностью.
ГПГ в Подмосковье варьируется достаточно сильно — от 90 до 200 сантиметров. Такие колебания обусловлены разной плотностью грунтов — чем большая плотность, и чем выше уровень залегания грунтовых вод, тем сильнее будет промерзать почва.
Среднестатистической расчетной величиной ГПГ, учитываемой при строительстве зданий в Подмосковье, принято считать 140 сантиметров. Более детальные показатели для разных городов Подмосковья вы можете увидеть в таблице 1.
Город | Сезонная глубина промерзания почвы (см) |
---|---|
Дубна | 150 |
Талдом | 130 |
Сергиев Посад, Александров | 140 |
Орехово-Зуево | 130 |
Егорьевск | 130 |
Коломна | 110 |
Ступино | 120 |
Серпухово | 100 |
Обнинск | 110 |
Балабаново | 110 |
Можайск | 125 |
Волоколамск | 120 |
Клин, Солнечногорск | 120 |
Звенигород, Истра | 110 |
Наро-Фоминск | 125 |
Чехов | 120 |
Воскресенск | 110 |
Павловский Посад, Ногинск, Пушкино | 110 |
Дмитров | 140 |
Пушкино, Щепково, Балашиха | 150 |
Одинцово, Болицыно, Кубинка | 140 |
Подольск, Домодедово, Люберцы | 100 |
Железнодорожный | 110 |
Мытища, Лобня | 140 |
Таблица 1. 2: Глубина промерзания грунта в Московской области
Внимание! Почему пучение способно разрушить ваше будущее строение:как обезопасить себя
Расчетная глубина промерзания грунта
Расчетная величина ГПГ, согласно нормативам СНИП, определяется по формуле: h = √M*k, в которой:
- М — сумма максимальных показателей минусовых температур в холодное время года;
- k — коэффициент, отличающийся для разных видов грунтов.
Величина коэффициента, использующегося в расчетной формуле, составляет:
- 0,23 — для глинистой почвы и суглинков;
- 0,28 — для пылеватой и мелкой песчаной почвы, супесей;
- 0,3 — для средне крупных гравелистых и крупных песков;
- 0,34 — для почвы с вкраплениями крупнообломочных горных пород.
Для примера, определим расчетную величину ГПГ для Вологды. Данные среднемесячных минусовых температур для этого города мы можем взять в документе СНИП № 2101. 99.
Для Вологды она составляет:
Из данной таблицы мы определяем значение M — для этого нам нужно суммировать показатели месяцев, обладающих минусовыми температурами.
- M = 11,6 + 10,7 + 5,4 + 2,9 + 7,9 = 38,5.
Теперь нам нужно извлечь квадратный корень из получившейся величины:
Что позволяет выполнить расчеты согласно основной формуле, учитывая коэффициент типа грунта, на котором будут выполняться строительные работы. Для примера используем коэффициент суглинистой почвы, он равен 0,23.
В результате мы получаем расчетную величину промерзания суглинистой почвы в Вологде равную 143 сантиметрам. Аналогичным образом расчеты выполняются для любых видов почв в других городах России.
Как определить реальную глубина промерзания грунта
Внимание! Фактические и нормативные показатели ГПГ всегда будут отличаться между собой из-за ряда сопутствующих факторов, таких как толщина снега и льда, которыми укрыт грунт.
Рис. 1.4: Нормативная глубина промерзания грунта в РФ (данные на 2006 год)
Для определения реальной глубины промерзания используется специальный прибор — мерзлотомер. Данное устройство представляет собою обсадную трубку, внутри которой размещен наполненный водой шланг с внутренними ограничителями передвижения льда. На шланг нанесена сантиметровая разметка.
Мерзлотомер погружается в грунт на глубину, равную фактической величине ГПГ (все измерения проводятся в холодное время года). Вода в трубке мерзлотомера превращается в лед на участке, где с прибором контактирует промерзшая почва.
Рис. 1.5: Фактическая глубина промерзания почвы в РФ
Спустя 10-12 часов после погружения устройства в почву шланг с водой изымается из обсадной трубки и по замершему участку воды определяется реальная глубина промерзания почвы.
Наши услуги
Услуги компании «Богатырь» это забивка свай и лидерное бурение. Мы имеем собственный автопарк бурильно-сваебойной техники и готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.
| Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Физический справочник / / Климат. Климатические данные. Природные данные. / / Нормативные глубины промерзания. Таблица — глубина промерзания.
Таблица 2: Глубина промерзания в см грунтов в южной части Дальневосточного региона вне зоны вечной мерзлоты ( Таблица 1. Глубина промерзания грунтов в см. по всей России. )
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Реклама, сотрудничество: [email protected]
Нормативная глубина промерзания грунта | Расчет сезонного промерзания грунта по СНиПу
Калькулятор ГПГ-Онлайн v.1.0
Калькулятор по расчету нормативной и расчетной глубины промерзания грунта для регионов РФ, Украины, Белоруссии и др. Два поиска: быстрый (по названию города) и расширенный. Пояснения и рабочие формулы можно найти под калькулятором.
Расширенный поиск:
Страна Выберите странуРоссийская ФедерацияАзербайджанская республикаРеспублика АрменияРеспублика БеларусьГрузияРеспублика КазахстанКыргызская республикаРеспублика МолдоваРеспублика ТаджикистанРеспублика УзбекистанУкраина
Республика, край, область Выберите регион:
Город Выберите город:
Нормативная глубина промерзания (СП 131.
13330.2012)Город | Грунт | Глубина промерзания, м |
— | Глина или суглинок | 0 |
Супесь, песков пылеватый или мелкий | 0 | |
Песок средней крупности, крупный или гравелистый | 0 | |
Крупнообломочные грунты | 0 |
Нормативная глубина сезонного промерзания грунта
Источники данных: СНиП 23-01-99* (СП 131.13330.2012); СНиП 23-01-99; СП 22.13330.2011 (СНиП 2.02.01-83*); СНиП 2.02.01-83
Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.
Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле:
dfn = d0 * √Mt
где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;
d0 — величина, принимаемая равной, м, для:
суглинков и глин — 0,23;
супесей, песков мелких и пылеватых — 0,28;
песков гравелистых, крупных и средней крупности — 0,30;
крупнообломочных грунтов — 0,34.
Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.
Расчетная глубина сезонного промерзания грунта
Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле:
df = kh * dfn
где dfn — нормативная глубина промерзания, определяемая;
kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл. 1; для наружных и внутренних фундаментов неотапливаемых сооружений kh = 1,1, кроме районов с отрицательной среднегодовой температурой.
П р и м е ч а н и я
- В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СП 25.13330. Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
- Для зданий с нерегулярным отоплением при определении kh за расчетную температуру воздуха принимают ее среднесуточное значение с учетом длительности отапливаемого и неотапливаемого периодов в течение суток.
Таблица 1
Особенности сооружения | Коэффициент kh при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, °С | ||||
0 | 5 | 10 | 15 | 20 и более | |
Без подвала с полами, устраиваемыми: | |||||
по грунту | 0,9 | 0,8 | 0,7 | 0,6 | 0,5 |
на лагах по грунту | 1 | 0,9 | 0,8 | 0,7 | 0,6 |
по утепленному цокольному перекрытию | 1 | 1 | 0,9 | 0,8 | 0,7 |
С подвалом или техническим подпольем | 0,8 | 0,7 | 0,6 | 0,5 | 0,4 |
П р и м е ч а н и я 1 Приведенные в таблице значения коэффициента kh относятся к фундаментам, у которых расстояние от внешней грани стены до края фундамента af< 0,5 м; если af 1,5 м, значения коэффициента kh повышают на 0,1, но не более чем до значения kh= 1; при промежуточном значении af значения коэффициента kh определяют интерполяцией. 2 К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии – помещения первого этажа. 3 При промежуточных значениях температуры воздуха коэффициент kh принимают с округлением до ближайшего меньшего значения, указанного в таблице. |
Строительные калькуляторы
Таблица расчёта глубины промерзания на территории России! Сохраняем! | БЛОГ СТРОИТЕЛЯ
На данный момент, существует не один десяток способов с помощью которых можно определить тип грунта на участке. И научных, и «дедовских», и с привлечением современной техники. Самый быстрый и несложный из них – сделать несколько глубоких ям, по всему участку, и рассмотреть так называемый срез почвы.
1. Песчаная почва; 2. Илистые почвы; 3. Торф; 4. Меловые почвы; 5. Глина1. Песчаная почва; 2. Илистые почвы; 3. Торф; 4. Меловые почвы; 5. Глина
Причем буквально в пару метрах (у следующей ямки) земля уже может быть другой – это нормально. И вот по таким результатам нужно сложить для себя геологическую картину – от нее и будет зависеть и глубина закладывания фундамента, и его вид.
Таблица глубины промерзания грунта на территории Российской Федерации.Таблица глубины промерзания грунта на территории Российской Федерации.
А любой сухой грунт, хоть он песчаный или глинистый, имеет стандартную несущую способность от 2кг/см2. Вот на эту цифру и нужно ориентироваться при расчете ленточного фундамента.
Таблица глубины промерзания грунта на территории Российской ФедерацииТаблица глубины промерзания грунта на территории Российской Федерации
Уровень промерзания почвы является определяющим в расчете глубины заложения основы под здание. Выделяют два уровня промерзания:
- Хорошими условия для закладки фундамента считаются в случае, если грунтовые воды располагаются ниже уровня промерзания почвы.
- К сложным условиям для закладки и эксплуатации основы дома относится промерзание слоя грунта с грунтовыми водами. В этом случае почва в зимний период вспучивается, что приводит к возрастающим нагрузкам на основание строения.
Уровень промерзания грунта. Морозное пучение.
Схема границ промерзания грунта. Обозначение полости оттаивания.Схема границ промерзания грунта. Обозначение полости оттаивания.
При правильном расчете и выборе глубины закладки основы строения (ниже уровня замерзания почвы), воздействующих сил на фундамент становится меньше. Не возникает эффекта «выталкивания» дома из земли. Фундамент не перекашивается и прослужит продолжительное время без проседания и перекосов несущих стен.
Изучая статьи и нарративы на нашем канале, вы можете узнать об:
Как самому правильно посчитать: сколько мешков штукатурки потребуется? Таблица расхода основных штукатурных смесей.
Таблицы расчета объема круглого леса ГОСТ 2708-75.
Таблица расчёта соотношения: воды, цемента, песка и щебня при приготовлении бетона вручную!
Нормативная глубина промерзания грунта в городах России.
.Нормативная глубина промерзания грунта в городах России.. | zabor-fence.ruИ зимой и летом, еще на этапе планирования фундамента дома или устанавливая ограждения вокруг него, необходимо задать себе вопрос. А на какую глубину заглубляться, чтобы фундамент не треснул или столбы (сваи) не повело, не повыворачивало? В этом помогут карты и таблицы с расчетными нормами глубин промерзания грунта в РФ и часть2 ( на Дальнем Востоке).
Нормативная глубина промерзания грунта РФ наглядно видна на картах, см
Таблица. Нормативная глубина промерзания грунта РФ по городам, в м
Город | [глина,суглинки] | [пески,супеси] | Город | [глина,суглинки] | [пески,супеси] |
Архангельск | 1.60 | 1.76 | Оренбург | 1. 60 | 1.76 |
Астрахань | 0.80 | 0.88 | Орск | 1.80 | 1.98 |
Брянск | 1.00 | 1.10 | Пенза | 1.40 | 1.54 |
Волгоград | 1.00 | 1.10 | Пермь | 1.80 | 1.98 |
Вологда | 1.40 | 1.54 | Псков | 0.80 | 0.88 |
Воркута | 2.40 | 2.64 | Ростов-на-Дону | 0.80 | 0.88 |
Воронеж | 1.20 | 1.32 | Рязань | 1.40 | 1.54 |
Екатеринбург | 1.80 | 1.98 | Салехард | 2.40 | 2.64 |
Ижевск | 1.60 | 1.76 | Самара | 1.60 | 1.76 |
Казань | 1.60 | 1.76 | Санкт-Петербург | 1.20 | 1.32 |
Кемерово | 2.00 | 2.20 | Саранск | 1.40 | 1.54 |
Киров | 1.60 | 1. 76 | Саратов | 1.40 | 1.54 |
Котлас | 1.60 | 1.76 | Серов | 2.00 | 2.20 |
Курск | 1.00 | 1.10 | Смоленск | 1.00 | 1.10 |
Липецк | 1.20 | 1.32 | Ставрополь | 0.60 | 0.66 |
Магнитогорск | 1.80 | 1.98 | Сургут | 2.40 | 2.64 |
Москва | 1.20 | 1.32 | Сыктывкар | 1.80 | 1.98 |
Набережные Челны | 1.60 | 1.76 | Тверь | 1.20 | 1.32 |
Нальчик | 0.60 | 0.66 | Тобольск | 2.00 | 2.20 |
Нарьян Мар | 2.40 | 2.64 | Томск | 2.20 | 2.42 |
Нижневартовск | 2.40 | 2.64 | Тюмень | 1.80 | 1.98 |
Нижний Новгород | 1.40 | 1.54 | Уфа | 180 | 198 |
Новокузнецк | 2. 00 | 2.20 | Ухта | 2.00 | 2..20 |
Новосибирск | 2.20 | 2.42 | Челябинск | 1.80 | 1.98 |
Омск | 2.00 | 2.20 | Элиста | 0.80 | 0.88 |
Орел | 1.00 | 1.10 | Ярославль | 1.40 | 1.54 |
Глубина промерзания грунта в Москве и др. городах с учетом вида грунта представлена в таблице .
Глубина промерзания (средняя) для — Волгоград, Великие Луки, Курск, Псков, Смоленск составляет — 1,2 м;
для Санкт-Петербург, Москва, Воронеж, Новгород — 1,4 м;
и для городов: Кострома, Пенза, Саратов, Вологда -1,5 м.
Глубина промерзания грунта в России
11 Февраль, 2014 — 10:14
При проектировании строительных объектов и инженерных сооружений, важным фактором, имеющим непосредственное влияние на правильность расчетов, служит принятая для места возведения объекта нормативная глубина промерзания грунта. С наступлением зимних холодов в результате замерзания воды, содержащейся в грунте, происходит ее превращение в лед и расширение, вызывающий процесс, получивший название пучение грунта.
Как следствие такого явления, увеличенный в объеме грунт начинает негативно воздействовать на фундамент. Причем сила такого действия в некоторых случаях бывает неимоверно большой и может составлять несколько десятков тонн на один метр площади фундамента. От такого натиска фундамент может сдвинуться со своего места. Вполне естественно, что результатом этого может быть изменение нормального состояния всего здания и даже его полное разрушение. Чтобы избежать таких негативных последствий, в расчетах обязательно нужно учитывать установленную СНиП глубину промерзания грунта. Нормативная глубина закладываемого фундамента всегда принимается ниже уровня промерзания.
Нормативная глубина промерзания для разных городов России согласно СНиП
Город | глина, суглинки (см) | пески, супеси (см) |
Архангельск | 160 | 176 |
Астрахань | 80 | 88 |
Брянск | 100 | 110 |
Волгоград | 100 | 110 |
Вологда | 140 | 154 |
Воркута | 240 | 264 |
Воронеж | 120 | 132 |
Екатеринбург | 180 | 198 |
Ижевск | 160 | 176 |
Казань | 160 | 176 |
Кемерово | 200 | 220 |
Киров | 160 | 176 |
Котлас | 160 | 176 |
Курск | 100 | 110 |
Липецк | 120 | 132 |
Магнитогорск | 180 | 198 |
Москва | 120 | 132 |
Набережные Челны | 160 | 176 |
Нальчик | 60 | 66 |
Нарьян Мар | 240 | 264 |
Нижневартовск | 240 | 264 |
Нижний Новгород | 140 | 154 |
Новокузнецк | 200 | 220 |
Новосибирск | 220 | 242 |
Омск | 200 | 220 |
Орел | 100 | 110 |
Оренбург | 160 | 176 |
Орск | 180 | 198 |
Пенза | 140 | 154 |
Пермь | 180 | 198 |
Псков | 80 | 88 |
Ростов-на-Дону | 80 | 88 |
Рязань | 140 | 154 |
Салехард | 240 | 264 |
Самара | 160 | 176 |
Санкт-Петербург | 120 | 132 |
Саранск | 140 | 154 |
Саратов | 140 | 154 |
Серов | 200 | 220 |
Смоленск | 100 | 110 |
Ставрополь | 60 | 66 |
Сургут | 240 | 264 |
Сыктывкар | 180 | 198 |
Тверь | 120 | 132 |
Тобольск | 200 | 220 |
Томск | 220 | 242 |
Тюмень | 180 | 198 |
Уфа | 180 | 198 |
Ухта | 200 | 220 |
Челябинск | 180 | 198 |
Элиста | 80 | 88 |
Ярославль | 140 | 154 |
Кроме климатических условий, принятых для конкретной местности, на этот параметр оказывают влияние еще несколько факторов. Учитывать необходимо не только среднегодовые температуры (глубина увеличивается с более низкой температурой), но и типы грунтов в месте проведения строительных работ. Разные грунты промерзают по разному. Например, глина, из-за своей большей пористости, промерзает меньше чем песчаные почвы.
При выполнении строительных расчетов необходимо учитывать также близость к поверхности почвы грунтовых вод. Наличие влаги близко к поверхности земли обуславливает большую интенсивность пучения грунтов.
Важно знать, что фактические величины промерзания в реальных условиях отличаются от тех, которые установлены в СНиП.
В нормативных данных приведены цифры с учетом максимально неблагоприятных данных для конкретной местности. Если зима снежная, то глубина промерзания может быть меньше, так как снег служит отличным теплоизолятором. Учитывать нужно и то, что площадь под домом также будет промерзать меньше, особенно, если здание хорошо отапливается. В целом принято считать, что нормативная глубина промерзания завышена относительно реальной на цифру около 40%. Тем не менее, это совсем не повод нарушать установленные нормы.
Источник: VolgaStroy.ru
Карта промерзания грунтом Москвы и области
В разных районах области глубина промерзания грунта будет различной. Это обусловлено отличием видов грунта, климата, уровня грунтовых вод, зеленых насаждений, количества осадков в зимний период, рельефа. Поэтому глубина промерзания постоянно изменяется.
Глубина промерзания грунта в Московской области
В зависимости от всех вышеперечисленных факторов определяется глубина промерзания, которая для Московской области составляет 0,5-1,8 м. Такие разные границы обусловлены разнообразием почв, которые имеют ряд закономерностей:
- плотный грунт промерзает глубже;
- влажная почва промерзает быстро и глубоко;
- сухое основание промерзает меньше.
Нормативные акты не предусматривают единой усредненной глубины промерзания, но обычно для расчетов берут показатель в 1,4 м. Его получают при расчете глубины по формуле из СП, он имеет достаточно большой запас.
На самом деле глубина варьируется в пределах 1 м, при этом на западе показатель составляет порядка 65 см в самых неблагоприятных условиях, а на севере и востоке в среднем показатель составляет 75 см. Даже при самых сложных условиях – мороз, мало снега, влажный грунт – этот показатель не превышает 1,5 м.
В окрестностях Москвы встречаются практически все типы грунтов, кроме IV категории. Поэтому точное значение глубины промерзания грунта может рассчитать только специалист – геолог, геодезист, проектировщик. Приблизительные показатели приведены в нормативных документах. Здесь есть карта промерзания грунта, а также приблизительная глубина для крупных городов.
Где применяются данные о промерзании грунта?
В зависимости от глубины промерзания грунта предусматривается прокладка трубопровода. Также этот показатель учитывают при проектировании фундаментов. Если они будут заглублены недостаточно, будет происходить их промерзание, при этом разрушение произойдет намного быстрее, чем предусмотрено проектом. В грунте содержится вода, которая при замерзании расширяется. Кроме того, в бетонных фундаментах присутствуют поры, которые заполняются влагой и водой. Капиллярные трещины также заполняются влагой, и в результате множественных циклов замораживания и оттаивания (которые происходят в течение одной зимы) происходит значительное снижение прочности. Для свайных стальных фундаментов такие воздействия не так страшны.
Чтобы защитить столбчатый или ленточный фундамент от промерзания, предусматривается создание утепленной отмостки. Если утепление не предусматривается, фундамент закладывают на 100 мм ниже уровня промерзания в песчаных грунтах, на 250 мм ниже для остальных типов основания. Если эти условия не соблюдаются, происходят осадки здания, что приводит к деформациям и отказу от нормальной эксплуатации.
(PDF) Динамика сезонного промерзания почв в Центральной России
253
Динамика сезонного промерзания почв в Центральной России
А. Маслаков, В. Гребенец, Д. Аблязина, Д. Шмелев, А. Радостева, В. Пастухов,
В. Антонов, А. Быковский, Г. Гаврилов, А. Горбатюк, Д. Манджиев, П. Мельник, А. Савелева,
А. Смирнов, Г. Хмельницкий, А. Шпунтова
Ломоносов Москва Государственный университет, географический факультет, Москва, Россия
г.Краев
Центр экологии и продуктивности лесов РАН
Д.А. Стрелецкий
Университет Джорджа Вашингтона, Вашингтон, округ Колумбия, США
Аннотация
Пространственные закономерности сезонного промерзания зависят от климатических условий, литологических свойств, условий теплообмена
на поверхности земли, структуры ландшафта и других факторов. Наблюдения показали, что сезонно-мерзлый слой
в «Центральной» России был в основном подвержен «микроклиматическим» и «наземным» условиям.«Исследования» позволили
нам установить корреляцию глубины промерзания и криогенных структур со структурой снежного покрова и с метеорологическими характеристиками
. Оценка динамики промерзания грунта позволяет прогнозировать развитие
деформаций, связанных с криогенным пучением, с целью улучшения «параметризации» оценок «пружины» и
. для «включения» влияния «сезонного» замораживания на сельскохозяйственные и почвенные процессы.
Ключевые слова: криогенное пучение; пейзаж; Центральная Россия; литология; сезонное замораживание; снежный покров.
Введение
Сезонные заморозки происходят почти повсеместно в Центральной России. Он характеризуется переменной интенсивностью, пространственной неоднородностью и значительной временной изменчивостью.
Пространственные и временные закономерности сезонного промерзания
подвержены влиянию нескольких факторов, включая метеорологические,
климатические, геологические и ландшафтные условия, а также
антропогенные преобразования.Глубина сезонного промерзания —
, непосредственно отслеживается только в нескольких зональных метеорологических обсерваториях
. Однако обсерватории не выявляют влияния
различных географических комплексов, характерных для региона
, а также различий в снежном покрове и литологии.
Одной из основных задач современной криолитологии и
гидрометеорологии является определение реакции криосферы
на климатические изменения. Как один из элементов криосферы
, «сезонно» замороженный слой »также« отражает »
таких откликов.Он часто определяет развитие
географических комплексов, влияет на обмен газом
между почвой, растительностью и атмосферой, а
влияет на формирование микрорельефа, а также условия
стока с территории. Фенофазы растительного покрова
различны при разной глубине промерзания. Сезонное «промерзание» почвы
оказывает достаточно существенное влияние на
работу хозяйственных объектов.Таким образом, мониторинг
развития сезонно мерзлого слоя имеет практическое значение
для управления природной средой.
Методы исследования
Основными задачами 13-летнего мониторинга динамики сезонно промерзшего слоя
в Центральной России
были определение основных факторов, определяющих глубину
сезонного промерзания, и оценка вклад каждого фактора
в изменчивость сезонно мерзлого слоя в
различных ландшафтных и наземных условиях при различных метеорологических условиях
.
Полевые исследования проводились в зоне смешанных лесов
Центральной России: в Калужской области,
Владимирской области и Московской области. Необходимые для анализа результатов метеорологические данныебыли получены на ближайших метеостанциях
.
Динамика сезонных промерзаний отслеживалась на
следующих участках (рис. 1):
• Среднее течение реки Протва на территории
Полевая учебно-исследовательская база Сатино
Государственный университет (МГУ) зимой 1999–2003 гг .;
• Среднее течение реки Клязьмы в районе
«Учебно-научная база» МСУ около
г. Петушки зимой 2003–2004 гг. ;
• Правый берег Москвы-реки в районе Звенигорода
Биологическая станция МГУ зимой 2004–2006 гг.,
2007–2009 и 2011–2012 гг .;
• Правый берег реки Оки в районе города
Пущино Московской области зимой
2006–2007;
• Берег Можайского водохранилища у д.
Красновидово зимой 2009–2010 гг.
Рисунок № 1. «Карта» области «полевых исследований»: № 1 – Сатино; № 2 –
Петушки; 3 — Звенигород; 4 — Пущино; 5 — Красновидово.
Междесятилетние изменения глубины промерзания и периода промерзания грунта в районе источника трех рек в Китае с 1960 по 2014 г. В Китае в период с 1960 по 2014 год были проанализированы тенденции глубины промерзания, первой даты, последней даты и продолжительности замерзания почвы, а также других метеорологических переменных, таких как температура воздуха, высота снежного покрова и количество осадков, наблюдаемых в тех же местах.Результаты показали следующее.
(1) Непрерывная, ускоренная тенденция к уменьшению глубины промерзания в TRSR возникла в периоды 1985–2014 и 2000–2014 годов по сравнению с периодом 1960–2014 годов. (2) Первая дата замораживания была отложена, а последняя дата замораживания значительно продвинута. Продвинутые тенденции в отношении замораживания последней даты были более значительными, чем отложенные тенденции в отношении замораживания первой даты. Продолжительность замораживания также ускорилась. (3) На глубину и период промерзания сильно влияли температура воздуха, индекс таяния и влажность почвы (осадки), но не снег.Глубина замораживания, первая дата замораживания, последняя дата замораживания и продолжительность также влияли друг на друга. (4) Ожидается, что эти тенденции к уменьшению глубины и продолжительности замерзания продолжатся, учитывая тенденции к повышению температуры воздуха и осадков в этом регионе.1. Введение
Мерзлая почва — чувствительный индикатор изменения климата. Это сильно коррелирует с температурой воздуха [1–3]. Как наблюдения, так и моделирование показывают, что условия мерзлых почв в настоящее время быстро меняются в ответ на глобальное потепление.Температура почвы продолжала повышаться в течение последних нескольких десятилетий [1, 4, 5]; уменьшились площади вечной мерзлоты и сезонной мерзлоты [6–8]; активный слой стал намного толще [9–12]; изменились ландшафты [13–15]. Это ухудшение мерзлого грунта окажет глубокое влияние на энергетические и гидрологические циклы за счет ускорения разложения органического углерода в почве и увеличения выброса CO 2 из почвы в атмосферу, изменяя наземные экосистемы и тем самым создавая петлю положительной обратной связи. ведущие к дальнейшему изменению климата [16–21].
Глубина и период замерзания (включая дату начала замерзания, дату последнего замерзания и продолжительность) мерзлого грунта, на которые сильно влияют температура воздуха, снег, влажность почвы и растительность [22–26], являются важными показателями замерзания. почвенные условия. Их междесятилетние изменения, а также вариации климатических переменных в местном и региональном масштабах все еще относительно плохо изучены. Основным препятствием для понимания реакции мерзлого грунта на изменение климата, а также взаимодействия между почвой и атмосферой является отсутствие долгосрочных наблюдений.По этой причине другие климатические показатели, такие как температура почвы и минимальная температура воздуха, данные дистанционного зондирования и численное моделирование, используются для характеристики глубины промерзания и периода промерзания почвы. Frauenfeld et al. [27] применили метод линейной интерполяции для определения глубины изотермы 0 ° C на основе данных о температуре почвы, измеренных на глубине от 0,2 до 3,2 м, с использованием данных о среднемесячной температуре почвы, собранных между 1930 и 1990 годами с 242 станций, расположенных по всей России.Они обнаружили, что активный слой вечной мерзлоты увеличился на 20 см, а глубина сезонного мерзлого грунта уменьшилась на 34 см в период с 1956 по 1990 год. Anandhi et al. [28] и Wang et al. [25] рассчитали дату первого замораживания, дату последнего замораживания и продолжительность периода заморозков почвы на основе минимальных суточных температур воздуха в Канзасе, США и Китае. Все их результаты показали, что первая дата замораживания была отложена, а последняя дата была перенесена на период их исследования. Используя данные специального микроволнового датчика / тепловизора (SSMI) на Тибетском плато (TP), Li et al.[29] обнаружили тенденцию к более позднему началу замерзания почвы примерно на 10 дней и к более ранней дате начала таяния почвы примерно на 14 дней в период 1988–2007 гг. Недавно численное моделирование использовалось для исследования изменений в цикле замораживания-оттаивания приповерхностных слоев почвы в ответ на потепление на ТП с 1981 по 2010 гг. [24]. Подобные результаты были найдены и в другом месте. Однако следует отметить, что хотя изотерма 0 ° C и минимальная температура воздуха могут использоваться как оценка глубины промерзания и периода промерзания почвы; они не совпадают с «истинным» значением. В то время как данные дистанционного зондирования и численное моделирование могут анализировать пространственные вариации, долгосрочные трещины между десятилетними вариациями не могут быть показаны из-за нехватки данных.
Район истока трех рек (TRSR) расположен там, где берут начало две самые длинные реки Китая, Янцзы и Желтая, и транснациональная река Меконг (называемая в Китае Ланканг). Он расположен на северо-востоке ТП, который представляет собой мозаичную переходную зону сезонной мерзлоты и прерывистой и сплошной вечной мерзлоты [30, 31].Этот регион особенно чувствителен к воздействиям изменения климата [4, 32–36]. Одно надежное наблюдение состоит в том, что температура воздуха в этом регионе повышалась в среднем на 0,32–0,36 ° C за десятилетие –1 за последние полвека (с 1960 по 2010 гг.) [33, 35], в то время как средняя скорость составила определено, что оно будет даже больше, если измерять его за последние 35 лет (десятилетие 0,46 ° C −1 между 1980 и 2014 годами) [4]. Это потепление происходит быстрее, чем средние значения, наблюдавшиеся за тот же период времени на ТП и Китае [37–41].В этом исследовании мы использовали наблюдаемые данные о глубине промерзания почвы, полученные с метеорологических станций, для исследования междесятилетних изменений глубины и периода промерзания в TRSR с 1960 по 2014 гг. Используя данные 14 станций, мы проанализировали тенденции глубины промерзания и период замораживания (включая первую дату, последнюю дату и продолжительность) мерзлого грунта и изучил их взаимосвязь с температурой воздуха, индексом таяния, высотой снежного покрова и осадками, а также друг с другом.
2. Данные и методы
Основные данные, использованные в этом исследовании, включают наблюдаемую глубину промерзания почвы, температуру воздуха, высоту снежного покрова и количество осадков.Данные были доступны для 14 метеорологических станций, расположенных на всей территории TRSR (Рисунок 1). В том числе 11 метеостанций на 55 лет (с 1960 по 2014 г. ) и три метеостанции на 30 лет (с 1980 по 2014 г.). Все данные собирались ежедневно на этих станциях, которые расположены в зоне сезонного мерзлого грунта. Список станций представлен в Таблице 1, а расположение станций показано на Рисунке 1. Глубина промерзания почвы измерялась один раз в день (08:00 по пекинскому времени) с использованием прибора для измерения мерзлого грунта, когда земля температура поверхности была ниже 0 ° C [42].Как правило, установка мерзлого грунта размещалась в естественном растительном покрове в поле наблюдения [42]. Покров наблюдательного поля на этих метеостанциях представлял собой типичный альпийский луг с высотой полога не более 0,20 м летом и не более 0,05 м зимой (рис. 2). Аппарат для мерзлого грунта состоял из двух основных труб: внешней и внутренней. Внутренняя трубка представляла собой резиновую трубку с чистой водой. Глубина промерзания грунта определялась глубиной промерзания воды во внутренней трубе [42].Максимальная глубина замерзания была выбрана из всех ежедневных данных о глубине замерзания для каждого года, чтобы представить годовую глубину замерзания. Данные были представлены, когда глубина промерзания превышала максимальный диапазон устройства для мерзлого грунта в исходных данных. Глубина замерзания в этом году не была включена в это исследование. Высота снежного покрова измерялась один раз в день (08:00 по пекинскому времени) с использованием снежной шкалы, когда снежный покров составлял более 0,5. Данные основаны на среднем значении трех измерений [42]. Чтобы охватить весь период возможных событий замораживания, годовые значения первой даты замораживания, последней даты замораживания и продолжительности замораживания были рассчитаны для каждого года, начинающегося 1 сентября предыдущего года и заканчивающегося 31 августа текущего года. , когда глубина застывания не равнялась нулю.
| 05 Для данного исследования были использованы тренды 9 в Matlab (Math-Works) для определения трендов глубины промерзания, первой даты, последней даты и продолжительности промерзания грунта. Линейные тренды также использовались для выявления тенденций в других климатических переменных, включая температуру воздуха, индекс таяния, максимальную высоту снежного покрова, годовые осадки, весенние (март, апрель и май) осадки, летние (июнь, июль и август) осадки и осенние (сентябрь, октябрь, ноябрь) осадки в тех же местах. Предыдущие исследования показали значительные резкие изменения глубины промерзания в середине 1980-х и 1999 гг. На ТП [43, 44]. Недавнее исследование также показало, что в течение периода 1998–2013 гг. В течение периода TP возникла тенденция к ускоренному потеплению по сравнению с периодом 1980–1997 гг. [39].В этом исследовании 1985 и 2000 годы были выбраны как моменты времени, когда можно было надежно оценить междекадные вариации. Таким образом, вариации были разбиты на три разных временных периода: с 1960 по 2014 год (последние 55 лет), с 1985 по 2014 год (последние 30 лет) и с 2000 по 2014 год (последние 15 лет). Корреляционный анализ, который является широко используемым методом статистической диагностики в современных исследованиях климатического анализа [45], использовался для выявления взаимосвязей между глубиной промерзания, первой датой, последней датой и продолжительностью замерзания почвы с другими климатическими переменными. Чтобы охватить весь период с возможными событиями замораживания, корреляция между датой первого замораживания, последней датой и продолжительностью с другими вынуждающими переменными рассчитывалась для каждого года, начинающегося 1 сентября предыдущего года и заканчивающегося 31 августа текущего года. год. Индекс оттаивания TI представляет собой сумму средних температур воздуха Ti на основе ежемесячных данных при температуре воздуха выше нуля; то есть для3. Результаты3.1. Изменения глубины промерзания грунтаВ таблице 2 и на рисунке 3 показаны тенденции изменения глубины промерзания на TRSR в 1960–2014 гг. Глубина промерзания показала статистически значимое уменьшение (at) в течение 1960–2014, 1985–2014 и 2000–2014 годов на TRSR. Глубина промерзания почвы уменьшилась на 10 станциях, тогда как на одной станции (Юйшу) она увеличилась лишь незначительно, со средним значением –3,98 см за декаду –1 за последние 55 лет. За последние 30 лет тенденция к снижению наблюдалась на 13 станциях, в то время как на одной станции (Руоергай) рост был незначительным со средним значением −8. Декада 93 см −1 . Этот результат был аналогичен, но немного ниже, чем у нашего предыдущего исследования, где -10,61 см декада -1 было зарегистрировано с помощью модифицированного теста тенденции Манна-Кендалла и оценки наклона Сена по данным наблюдений девяти метеорологических станций за последние 35 лет (1980 –2014) [4]. Тенденции к снижению также наблюдались на 13 станциях за последние 15 лет со средней скоростью –13,98 см за декаду –1 . Было зарегистрировано только два значительных увеличения (at). Они происходили на станции Юшу в период 1960–2014 гг. И в течение 2000–2014 гг., Их количество составляло 2.85 и 12,79 см декада −1 соответственно. Общие тенденции к снижению указывают на то, что в районах с сезонной мерзлотой почва с каждым годом промерзает на все меньшую глубину. Более того, в периоды 1985–2014 и 2000–2014 годов в TRSR появилась тенденция к непрерывному ускорению снижения по сравнению с периодом 1960–2014 годов. Чистое изменение составило уменьшение глубины промерзания на 21,89 см в 2014 году по сравнению с 1955 годом и еще большее уменьшение на 26,79 см с 1985 по 2014 год, при уменьшении на 20. 97 см зафиксировано за последние 15 лет.
|