Толщина фундаментная плита: К сожалению, запрашиваемая страница не существует.

Содержание

Толщина плиты фундамента под газобетонный дом

Содержание

  1. Как рассчитать толщину плитных монолитных фундаментов.
  2. Какие параметры влияют на расчет плиты.
  3. Для чего нужно рассчитывать толщину плитного фундамента.
  4. Расчет песчано-щебеневой подушки.
  5. Пример расчета основных параметров плиты фундамента.
  6. Фундамент для дома из газобетона.
  7. Особенности фундаментов под газобетон.
  8. Заливка монолитной плиты.
  9. Свойства монолита.
  10. Подготовка к работе.
  11. Выкапывание котлована.
  12. Засыпка подушки.
  13. Монтаж опалубки.
  14. Заливка стяжки.
  15. Армирование.
  16. Заливка бетона.
  17. Какой толщины должна быть плита монолитного фундамента?
  18. Последовательность расчета толщины будущей плиты.
  19. Этапы строительства монолитного фундамента по шагам.

Как рассчитать толщину плитных монолитных фундаментов.

Толщина плиты фундамента под газобетонный частный дом.

Эскиз с указанием толщины плитного фундамента.

Монолитные плитные фундаменты можно встретить не только в частном, но и хозяйственном строительстве. Монолитные плиты способны выдерживать большие нагрузки, масса построенного здания равномерно распределяется между плитой и грунтом, поэтому фактор проседания в таких основаниях отсутствует.

Они могут быть различной конструкции, глубины установки и типа, но в целом, состоят из бетона и арматурного пояса. Дополнительно используется песчано-гравийная подушка и гидроизоляция, но это уже сопутствующие материалы и на толщину, собственно, плиты они не влияют. Часто используются как основание для газобетонных и кирпичных зданий.

Какие параметры влияют на расчет плиты.

Толщина плиты фундамента под газобетонный дом.

Схема с указанием толщины всех слоев плитного фундамента.

Любой расчет плиты для монолитного фундамента нужно начинать непосредственно с подготовки эскизного проекта будущего дома. Также изначально учитывается еще ряд ключевых параметров, без которых правильно посчитать толщину основания не получится:

  • материал будущего здания, это может быть дерево, кирпич или газобетон;
  • расстояние между арматурными слоями. Это расчетный параметр, зависит от глубины залегания грунтовых вод, структуры почвы и способа выполнения плиты;
  • расчетная толщина бетона. Нужно помнить, что бетон должен полностью закрыть арматуру на всех плоскостях без исключения, желательно давать резервную толщину по опалубке не менее 5−7 см;
  • толщина, тип и размеры арматурной сетки.

Как правило, для мягких и легких строительных материалов, типа газобетона, достаточно только просуммировать все эти показатели и тогда получится толщина плиты. Оптимальной считается толщина плиты в 20− 30 см, но конечный результат также определяется составом почвы и равномерностью залегания всех грунтовых пород. Иногда к таким показателям также добавляется параметр послойного суммирования, если грунты неоднородные.

Кроме габаритов самого плитного основания, существует также толщина дренажного слоя, песчаной подушки и гидроизоляционного слоя. Также нужно помнить, что для обустройства такого фундамента нужно снять верхний плодородный слой почвы и вырыть котлован на глубину не менее 0,5 м. Такая глубина залегания дна котлована определяется необходимостью укладывать щебень толщиной 0,2 м и песок на толщину 0,3 м.

В результате получается, что расчетная толщина плитного фундамента составляет суммарно приблизительно 0,6 м. Но и такая величина не считается стандартной, ведь также существует фактор проседания почвы за счет массы здания, есть свои характеристики грунта и высота расположения грунтового горизонта. Также стоит учитывать массу бетона, которая также будет влиять на толщину конструкции в целом.

Например, фундамент для кирпичного дома должен на 5 см быть толще, чем для газобетона. Также учитывается наличие дополнительных этажей, так как каждый добавляет свою нагрузку на основание, и оно будет равномерно возрастать в толщине.

Итак, чем выше и больше здание, тем толще фундаментная плита, а если дом сделан из газобетона, тогда плита будет еще толще. Стандартный двухэтажный дом из газобетона будет устроен на плите толщиной от 35 см, иногда даже и больше, если дом имеет сложную структуру и разветвленную систему несущих стен и перегородок.

Для чего нужно рассчитывать толщину плитного фундамента.

Толщина плиты фундамента под газобетонный дом.

Толщина готового плитного основания под здание.

Все расчеты плитных оснований всегда делаются в строгом соответствии с нормами ГОСТ и СНиП. Если будет точно рассчитано, какая конструкция для данного здания будет оптимальной, то можно точно рассчитать необходимое количество бетона для его возведения и фундамент получится очень прочный, как и будущий дом.

Перед началом расчетов нужно дополнительно получить следующие данные:

  1. Общий периметр фундамента (соответствует размерам дома, может быть немного больше за счет дополнительной отмостки или внешнего гидроизоляционного слоя).
  2. Суммарную площадь плиты с учетом всех защитных слоев и гидроизоляций.
  3. Площадь поверхностей, которые прямо контактируют с грунтом.
  4. Количество строительных материалов
  5. Расчетные нагрузки на почву за счет подошвы.

А также необходимы данные о конструкции арматурного пояса, периодичности ячеек и общего веса арматуры.

Расчет песчано-щебеневой подушки.

Толщина плиты фундамента под газобетонный дом.

Схематическое отображение плитного фундамента с указанием толщины песчано-щебневой подушки.

Толщина подушки часто меняется в зависимости от состояния грунта и типа здания, а также из чего дом сделан. Толщина зависит от множества показателей, ведь для деревянных зданий достаточно подушки толщиной в 15 см, а вот для массивных домов из газобетона – уже не менее полуметра. Но, как правило, толщина подушки рассчитывается для каждого дома индивидуально, тут учитываются следующие факторы:

  • состояние и структура грунта;
  • степень промерзания почвы;
  • пучение почв и сезонные подвижки;
  • влажность почвы и высота залегания грунтовых горизонтов;
  • материал дома и суммарная масса здания;
  • размеры плиты.

Щебень в подушке нужен для компенсации пучинистости грунта, поэтому невысокую плотность почвы щебень компенсирует каменистостью. Также это отличный дренажный материал, особенно на глинистых грунтах с высоким содержанием влаги. Песок обеспечивает равномерное распределение массы здания по всей площади подошвы.

Пример расчета основных параметров плиты фундамента.

Толщина плиты фундамента под газобетонный дом.

Эскиз оптимальной толщины плиты фундамента.

Чтобы правильно разобраться в расчете параметров плитного фундамента, а также четко рассчитать необходимое количество бетона, стоит использовать следующий пример:

  1. Принимается типичное здание из газобетона площадью 100 м² (10х10) и под него подбирается плитный фундамент на скальных породах толщиной 0,25 м мелкозаглубленного типа.
  2. Объем плиты в таких случаях составляет 25 м³. Это суммарное количество бетона, необходимое для заливки такой конструкции. Тут объем арматурной сетки принимается за ноль, чтобы не усложнять расчеты. На практике такие расчеты также проводятся, но уже для больших сооружений.
  3. Установка ребер жесткости, которые используются для повышения надежности конструкции. Шаг ребер жесткости составляет 3 м, при этом создаются квадраты.
  4. Длина ребер жесткости будет соответствовать длине фундамента, а высота – это толщина плиты.

Итак, для заливки плитного фундамента площадью 100 м² нужно использовать 25 м³ бетона. Также сюда пойдет некоторое количество арматуры, гидроизоляции и песка со щебнем для подушки. В целом хочется отметить, что любому застройщику посчитать толщину плиты можно самостоятельно, достаточно иметь минимальные математические знания.

Зато, если сразу сделать расчет фундаментной плиты, то можно в общем контролировать расходы строительных материалов, и следить за недобросовестными строителями, а также четко определиться с размерами дома из газобетона или кирпича. Необходимое количество материалов Вы так же можете посчитать на нашем онлайн калькуляторе.

Фундамент для дома из газобетона.

Выбор газобетона для строительства дома оправдывается сочетанием большой надежности, хорошей теплоизоляции, малого веса и невысокой стоимости этого материала. Вместе с тем, к выбору фундамента под такую постройку следует отнестись крайне внимательно. Это позволит продлить срок эксплуатации всего сооружения и в полной мере воспользоваться всеми преимущества газобетонных блоков.

Особенности фундаментов под газобетон.

При выборе наиболее подходящего типа фундамента следует учесть некоторые особенности газобетонных стен:

  • минимальная ширина газобетонного блока составляет 200 мм. Поэтому даже при строительстве небольших и легких надворных сооружений придется обустраивать фундамент достаточно большой ширины;
  • хотя газобетон и способен выдерживать серьезные статические нагрузки, он очень чувствителен даже к небольшим подвижкам основания под ним. Поэтому фундамент должен обладать максимально возможной механической прочностью, не изгибаться под массой дома и не менять геометрию под воздействием пучинистых сил грунта.

В теории, под газобетонные строения можно закладывать абсолютно любой вид оснований: столбчатые, винтовые, мелкозаглубленные ленточные и т. д. Однако на практике из-за особенностей геологического строения почвы на участке далеко не всегда перечисленные типы фундаментов смогут справиться с имеющимися требованиями к ним. Поэтому чаще всего используют монолитную плиту, обеспечивающую наиболее равномерную передачу нагрузок от стен к фундаменту.

Заливка монолитной плиты.

Свойства монолита.

Толщина плиты фундамента под газобетонный дом одноэтажный.

К достоинствам литых фундаментных плит относят следующее:

  • большая механическая прочность, предохраняющая газобетон от растрескивания. Даже если под зданием будут происходить подвижки почвы, на геометрии фундамента это никак не скажется;
  • пригодность для устройства на любых видах грунтов: глина, торфяник, песок, камень или смешанные;
  • полная независимость от глубины прохождения грунтовых вод;
  • доступная технология изготовления, позволяющая вести работы без привлечения дорогостоящих специалистов;
  • долговечность.

Вместе с тем, нужно учитывать и некоторые недостатки:

  • большой объем земляных работ при выкапывании котлована;
  • невозможность обустройства заглубленного подвала;
  • значительные расходы на материалы.

Подготовка к работе.

К числу подготовительных мероприятий относят:

  • расчистку участка от мусора и, по мере возможности, от старых деревьев, которые могли бы помешать подходу техники;
  • разметку по углам будущего основания. Размеры выбираются исходя из данных проектной документации для дома. При этом длина каждой стороны фундамента должна превышать длину соответствующей стены дома не менее, чем на 1 м. Это упростит работу при монтаже опалубки.

Выкапывание котлована.

Поскольку площадь основания дома достаточно большая, то объем работы будет ощутимым даже при условии небольшого заглубления. Поэтому будет разумным воспользоваться услугами строительной техники. Однако последние 15 см почвы рекомендуется вынимать вручную. Это позволит непрерывно контролировать глубину котлована и горизонтальность его дна.

Для поверхностного варианта глубина котлована должна составлять 30 см, для заглубленного – 50 см.

Толщина плиты фундамента под газобетонный дом.

ВАЖНО.Если при выкапывании котлована в какой-то точке глубина превысила расчетную, не стоит просто засыпать получившуюся яму грунтом. Гораздо надежнее будет несколько увеличить глубину по всей площади, а затем насыпать более высокую подушку.

Засыпка подушки.

Толщина плиты фундамента под газобетонный дом.

Для поверхностного фундамента будет достаточно засыпать слой песка толщиной 30 см. В случае с заглубленным основанием сначала засыпается 20 см гравия, затем – 30 см песка. Готовая подушка тщательно трамбуется виброплощадкой.

Монтаж опалубки.

Для опалубки рекомендуется применять прочные доски, не имеющие механических повреждений. Качество материала здесь очень важно, поскольку масса заливаемого бетона будет весьма значительной и опалубка должна гарантированно выдержать эту нагрузку. Между собой доски крепятся гвоздями.

Толщина плиты фундамента под газобетонный дом.

Снаружи стенки опалубки необходимо разместить подпорки. Надежность получившейся конструкции проверяется сильными ударами ноги по ней. При ударе ничто не должно шевелиться.

Внутренняя сторона стенок опалубки смачивается водой. Это даст более гладкую поверхность боковой грани плиты.

Заливка стяжки.

Монолитный фундамент потребует заливки двух слоев стяжки. Толщина каждого слоя – 4-5 см.

Толщина плиты фундамента под газобетонный дом двухэтажный.

Приступать к заливке второго слоя можно лишь после высыхания первого. На сухую стяжку укладывается гидроизоляция из полиэтилена таким образом, чтобы нахлест соседних листов составлял порядка 10 см. Запас пленки по краям котлована должен быть не менее 1 м. После этого заливается второй слой стяжки.

Армирование.

Толщина плиты фундамента под газобетонный коттедж двухэтажный.

Каркас выполняется из арматуры класса А-III. Диаметр прута – 10-16 мм, что зависит от этажности дома. В итоге должно получиться два сетчатых поля, образуемых проволочными квадратами со сторонами 15-20 см. Между собой арматура вяжется стальной проволокой диаметром 5 мм.

Толщина плиты фундамента под газобетонный частный коттедж одноэтажный.

Заливка бетона.

Качество и однородность заливаемого бетона имеют первостепенное значение. Чтобы фундамент для дома из газобетона получился максимально прочным, желательно использовать миксер с подающим насосом. Стандартный объем автомиксера – 6-8 кубометров раствора. Подающая стрела бетононасоса может иметь в длину до 30 м. данный параметр лучше уточнить заранее, что позволит точнее спланировать ход заливки и варианты подъезда машины к площадке.

Если по каким-либо причинам воспользоваться миксером невозможно, то для обеспечения непрерывной подачи бетона можно воспользоваться ручным замешиванием в бетономешалке. Однако это потребует привлечения дополнительных рабочих и постоянного контроля качества.

Электрические бетономешалки позволяют получить от 50 до 200 литров раствора за один цикл замеса. Время замешивания – от 3 до 5 минут. Однако следует учитывать, что потребуется дополнительное время на подачу в мешалку цемента, песка, воды и щебня, а также время на разгрузку и доставку к месту заливки. Соответственно, планировать ход заливки нужно исходя из 10-15 минут на цикл замеса. При использовании 50-л бетономешалки на заливку 1 кубометра раствора может потребоваться порядка 5 часов.

Подаваемая смесь распределяется по всей площади опалубки. Упростить эту процедуру можно использованием направляющего желоба. При этом потребуется дополнительное разгребание бетона вручную по всей площади заливаемого фундамента. Хотя раствор и достаточно жидкий, но при попытке заливать его в одну точку на месте подачи будут оседать наиболее тяжелые фракции, а свободно растекаться по арматурному полю водянистая сможет лишь водянистая составляющая. Это чревато появлением неравномерности в прочностных характеристиках плиты и растрескиванием при высыхании.

Толщина плиты фундамента под газобетонный частный дом двухэтажный.

Бетонную смесь сразу же после заливки следует тщательно уплотнить погружным вибратором. Это удалит пузыри воздуха и увеличит прочность бетонной подушки. Не будет лишним дополнительно простучать кувалдой весь периметр опалубки, где прочность имеет особенно ванное значение.

Залитую плиту разглаживают до полной горизонтали. Контролировать данный процесс помогает тонкий слой воды, выступающей из раствора и проявляющей все углубления и возвышенности.

Полностью залить всю опалубку за один рабочий день получается далеко не всегда. Порядок приостановки работы будет зависеть от длительности паузы:

если работа останавливается на срок менее 12 часов, то уже готовая поверхность просто закрывается полиэтиленовой пленкой. Перед продолжением работы пленка снимается, а бетона смывается выступившее «бетонное молочко». Далее заливка продолжается в обычном режиме;

в том случае, когда пауза превышает 12 часов, бетон начнет набирать прочность и придется использовать технологию «холодного шва». Для этого работу начинают лишь после полного отвердения уже залитого объема бетона.

ВАЖНО. Продолжать заливку на слегка подсохший бетон категорически не рекомендуется. Отвердевший слой в этом случае будет иметь совсем малую толщину и лопнет под весом заливаемого свежего бетона.

Монолитный фундамент будет готов к продолжению строительства спустя один месяц. Первую неделю рекомендуется по мере высыхания смачивать его водой. Тем самым получится избежать появления трещин. Оставшиеся свободными концы гидроизоляционной пленки заворачиваются на плиту и припаиваются к ней горелкой.

Воспользовавшись технологией заливки монолитной фундаментной плиты под дом из газобетонных блоков, можно в дальнейшем уже не беспокоиться о просадках отдельных участков основания. Стены останутся в целости, поскольку даже если фундамент и чуть наклонится, то произойдет это сразу по всей площади, не приводя к появлению трещин.

Какой толщины должна быть плита монолитного фундамента?

Плитный фундамент считается самым надежным и выбирается при строительстве домов на неустойчивых и подтапливаемых почвах. Этот тип оказывает минимальное воздействие на грунт и обеспечивает равномерное распределение всех весовых нагрузок. Технология заливки сама по себе простая, основной акцент делается на расчете параметров плиты, а именно: глубины заложения, высоты подушки, марки и толщины бетона, сечения арматуры, потребности в утеплении. Диапазон варьируется от 15 до 35 см, если расчетная величина отличается, то рассматриваются другие варианты основ.

Толщина плиты фундамента под газобетонный частный коттедж.

Особенности плитного фундамента.

Представляет собой бетонный монолит с двумя рядами сетки из арматуры, размещаемый поверх утрамбованной песчаной подушки, в особо сложных случаях – усиленный ребрами жесткости снизу. Величина затрат на его строительство зависит от степени заглубленности основания: на устойчивых почвах оно практически сравнивается с землей и требует минимальных вложений и усилий. На плывущих грунтах или при необходимости организации подвального пространства на плитный фундамент уходит до 1/3 общестроительного бюджета, так как закладка проводится ниже уровня промерзания.

Существуют нормы, согласно которым слой армосетки размещается на расстоянии не менее 5 см от края плиты, 7 – между собой, минимальное сечение арматуры – 12 см. С учетом укладки двух прутьев в решетку итоговая толщина составляет 21,8 см. Но использовать его по умолчанию нельзя, точные параметры монолитного фундамента определяет расчет. Полученное значение сравнивают с рекомендуемым с учетом веса здания и геологических условий участка:

Для устойчивых грунтов.

Для сильно пучинистых.

Толщина плиты для деревянного дома зависит от этажности, при использовании хорошо просушенных материалов их удельный вес не превышает 600 кг/м 3. что в 2,5-3 меньше, чем у кирпича. Как следствие рекомендуемое значение составляет 30 см.

Толщина плиты фундамента под газобетонный коттедж одноэтажный.

Последовательность расчета толщины будущей плиты.

К исходным данным относят: все весовые нагрузки, включая снеговые, удельное давление на грунт для данного типа фундамента (справочная величина, зависит от типа почвы), площадь постройки. Вес самой монолитной плиты игнорируется благодаря ее размещению на песчаной подушке. Основные этапы расчета при этом:

  • Анализ и грунта и определение оптимального удельного давления на фундамент.
  • Расчет массы постройки. Суммируется вес стен (включая отделку и утеплитель), перекрытий, кровельных конструкций, мебели, снега на крыше зимой.
  • Определение удельной нагрузки на грунт путем деления веса дома на площадь и сравнение ее с нормативным значением. Полученная разница умножается на размеры плитного фундамента, итоговое число соответствует его требуемой массе.
  • Расчет оптимального объема (деление предыдущего значения на плотность бетона) и толщины монолита.
  • Округление до ближайшей величины, кратной 5 (не важно в какую сторону).
  • Перерасчет массы монолитного фундамента и сравнение его с рекомендуемой, расхождение не должно превышать ±25 %.
Толщина плиты фундамента под газобетонный коттедж двухэтажный.

Следующим шагом является определение оптимальной глубины заложения и толщины подушки из щебня и песка, эти факторы напрямую зависят от типа почвы. Минимальная высота траншеи – 60 см, но такая закладка допустима лишь на устойчивых грунтах. Во всех остальных случаях плитный фундамент размещается на 60 см ниже уровня промерзания. Толщина засыпки зависит от веса постройки, минимум составляет:

  • Для гаража – 25 см.
  • Легких щитовых конструкций – 15 см.
  • Фундамента для дома из бруса – 25-30 см.
  • Для здания из кирпича и бетона – 50 см (из ни 20 – щебень, 30 – песок).

Этот слой обеспечивает равномерность распределения весовой нагрузки, на сложных почвах его увеличивают на 5 см как минимум.

Этапы строительства монолитного фундамента по шагам.

Работы начинаются с анализа состояния грунта и расчета толщины самого основания и подушки под ним, после чего определяется требуемое количество стройматериалов. При возведении монолитной плиты рекомендуется придерживаться следующей схемы действий:

1. Разметка участка и земляные работы.

2. Настил геотекстильного полотна по дну и периметру стен выкопанного котлована.

Толщина плиты фундамента под газобетонный коттедж.

3. Размещение дренажного отвода. Необязательный этап, выбирается при высоком уровне грунтовых вод. В этом случае по дну котлована прорывают неглубокие траншеи, закрываемые тем же геотекстилем, поверх которого прокладываются пластиковые трубы с отверстиями. После чего их засыпают щебнем и накрывают еще одним слоем сетки. Рекомендуемая схема расположения труб – поперек будущей монолитной плиты.

4. Организация подушки, первым засыпается и трамбуется щебень (на особо сложных грунтах – пропитанный битумом), после чего эту операцию повторяют с песком, для облегчения процесса уплотнения его слегка смачивают. На этом этапе задействуется вибротехника, достичь нужной плотности без оборудования непросто.

Важный нюанс: используется песок только крупных фракций, при превышении толщины подушки свыше 10 см он трамбуется послойно.

5. Прокладка коммуникаций согласно заранее составленной схемы (при необходимости). Этот этап проводится одновременно с предыдущим, водопроводные или канализационные трубы размещаются поверх прослойки из щебня. Сверление монолитной фундаментной плиты после застывания считается грубейшим нарушением технологии, важно продумать любые мелочи.

6. Выравнивание дна котлована тощим бетоном. Еще один необязательный, но рекомендуемый этап, выбираемый при риске подтапливания или смещения грунта. Толщина заливаемого слоя – в пределах 10 см.

7. Монтаж опалубочных конструкций, проверка разметки и отклонений по уровню.

8. Настил рулонной гидроизоляции с обязательным выпуском по краям около 1 м. Опытные строители используют не менее двух слоев, все стыки обрабатывают паяльником.

Толщина плиты фундамента под газобетонный частный дом одноэтажный.

9. Утепление будущей монолитной плиты (рекомендуется) – укладка экструдированного пенополистирола по дну и бокам котлована с учетом отверстий для коммуникаций. Их толщина учитывается заранее, до начала монтажа опалубки.

10. Армирование – перевязка железных прутьев с минимальным сечением в 12 мм с помощью пластиковых хомутов или проволоки с интервалом от 20 до 30 см. Сетка размещается в два слоя, нижний связывается из более толстой и прочной арматуры. На этом этапе важно не повредить утеплитель (при наличии) или гидроизоляцию, поэтому под прутья размещают специальные пластиковые подпорки.

11. Заливка бетона. Этот этап проводится в один день, при большом объеме фундамента имеет смысл заказать готовый раствор. Допускается самостоятельное приготовление бетона с маркой прочности не ниже М300, но допустимый перерыв в процессе не превышает 12 часов. Бетон заливается, разравнивается и трамбуется исключительно послойно по всему периметру монолитной плиты. Заполнение отдельными участками приводит к образованию трещин, этот фактор является еще одним доводом в пользу заводского раствора. Залитый бетон уплотняется глубинными вибраторами, в крайнем случае – вручную, после чего его поверхность разглаживается, выравнивается рейками и накрывается полиэтиленовой пленкой.

12. Выдержка монолитного фундамента – не менее 4 недель, с обязательным уходом за поверхностью (обрызгивании водой) в течении первых 7-10 дней.

13. Снятие опалубки, гидроизоляция боковых стен плиты, а именно – поднятие и крепление к стенам отложенных ранее рулонных стройматериалов.

Указанная технология строительства фундамента требует значительных вложений и трудозатрат, важно понимать, что все они будут бесполезны при выборе неправильной толщины плиты или глубины ее заложения. Такие этапы, как анализ состояния грунта, расчет параметров основания и непосредственно бетонирование однозначно стоит доверить специалистам. Данная пошаговая инструкция подходит для возведения плоской монолитной железобетонной плиты, при необходимости прокладки ребер жесткости процесс усложняется: подготавливаются специальные траншеи вдоль несущих стен с шагом не менее 3 м. Но их точные размеры и интервал определяет сложный инженерный расчет, в частном строительстве этот вариант используется редко.

 

Рекомендация: Хорошая большая обзорная статья, из нее можно узнать о толщине плиты фундамента под газобетонный частный дом или коттедж, информация подойдет так же и для дач, бань и других зданий и сооружений. Будьте внимательны, не заблудитесь в обилие информации, сделайте правильный расчет вашего строения и выберите оптимальную толщину плиты подходящую именно вам. Зачем вам бессмысленно терять свои кровно заработанные деньги?

Толщина плитного фундамент

Плитный фундамент – сплошное основание из армированного бетона, которое укладывается под всей площадью здания. Фундаменты данного типа очень прочные и оказывают наименьшее давление на грунт. Но указанными преимуществами может обладать только тот плитный фундамент, толщина которого рассчитана с учетом характера грунта, глубины закладки и нагрузок, которые будет нести само основание во время его эксплуатации.

Плитный фундамент – сплошное основание из армированного бетона, которое укладывается под всей площадью здания. Фундаменты данного типа очень прочные и оказывают наименьшее давление на грунт. Но указанными преимуществами может обладать только тот плитный фундамент, толщина которого рассчитана с учетом характера грунта, глубины закладки и нагрузок, которые будет нести само основание во время его эксплуатации.

 

Особенности расчета толщины плитного фундамента

При проведении расчета толщины монолитной фундаментной плиты необходимо учитывать следующие величины:

  • промежуток между арматурными сетками;
  • толщина бетонного слоя над верхней и под нижней арматурной сеткой;
  • толщина арматуры.

Самый простой расчет толщины плитного фундамента осуществляется путем суммирования всех этих показателей, при этом оптимальным значением принято считать толщину плиты в 20-30 см. Конечный результат расчета во многом определяется составом грунта и равномерностью залегания пород.

Помимо габаритов плиты основания при обустройстве фундамента необходимо учитывать ширину дренажного слоя и песчаной подушки. Для установки плитного фундамента снимается верхний слой грунта и роется котлован глубиной около 0,5 м. Данная величина определяется с учетом того, что щебень укладывается слоем примерно в 20 см, песок – около 30 см.

В итоге простого суммирования получается, что минимальная толщина всего плитного фундамента не может быть меньше 60 см. Но этот показатель может значительно варьироваться в зависимости от изменений характеристик грунта и веса всей будущей постройки, под которую данное основание сооружается.

Так, плитный фундамент для кирпичного здания должен быть на 5 см толще такого же основания для постройки из пенобетона. При этом при наличии второго этажа в кирпичном доме толщина монолитной фундаментной плиты возрастает до 40 см (или больше — в зависимости от веса и конфигурации строения), а при строительстве двухэтажной постройки из пенобетона – как минимум до 35 см. Данные цифры приведены в качестве примера для понимания того, насколько толщина плитного основания зависит от типа постройки, под которую оно закладывается. Точные показатели для конкретного здания определяются путем расчетов, которые рекомендуется поручать специалистам.

 

Зачем измерять толщину плитного фундамента

Все указанные расчеты должны выполнятся в соответствии с нормами соответствующих СНиП и ГОСТ. Зная, какая толщина плитного фундамента наиболее подходит для сооружаемой постройки, можно не только обеспечить прочное основание под строящееся здание, но и определить количество необходимых материалов для его закладки.

Помимо толщины для расчета плитного фундамента нужно определить:

  • периметр (длину всех сторон) основания;
  • площадь плиты, включая термо- и гидроизоляцию;
  • площадь боковой поверхности;
  • количество бетона;
  • вес бетона;
  • нагрузку на почву;
  • диаметр арматуры в сетке;
  • диаметр вертикальных прутьев арматуры;
  • размер ячейки сетки;
  • нахлест арматуры;
  • общую длину арматурных прутьев;
  • общий вес арматуры.

Для расчета количества бетона, необходимого для заливки плитного фундамента, из общего объема вычитается объем закладываемой термоизоляции.

 

Подушка под плитный фундамент: определяем толщину

Подушка под плитное основание укладывается по всей площади. Она состоит из слоя щебня и слоя песка, которые наносятся на предварительно выровненное дно котлована. Сначала насыпается щебень, как правило, слоем в 20 см, а затем песок – слоем в 30 см. Таким образом, наиболее распространенная толщина подушки под плитный фундамент составляет примерно 0,5 м.

Следует учитывать, что толщина каждого из двух слоев песчано-щебеночной подушки может варьироваться в довольно значительных пределах. Данный показатель зависит от нескольких факторов, среди которых основными являются характеристики грунта и вес постройки. Например, для легких деревянных строений будет достаточно подушки толщиной 15 см, для гаража – 25 см, а полуметровый слой лучше всего подойдет для больших кирпичных зданий.

Щебень в данном случае компенсирует пучинистость и невысокую плотность грунта, а также является отличным дренажом, особенно на глинистых почвах с высоким уровнем грунтовых вод. Песок при этом обеспечивает равномерность нагрузки на грунт.

 

Пример расчета толщины и объема плитного фундамента

Расчет плитного фундамента выполняют для определения количества бетона, необходимого для его заливки. Для этого площадь подошвы следует умножить на ее толщину (высоту).

Проще всего разобраться с расчетом на конкретном примере, который можно использовать для других случаев, поменяв соответствующие цифры. Допустим, будет возводиться дом размером 10х10 метров и монолитный плитный фундамент, толщина которого составляет 0,25 м. Объем плиты в данном случае составит 25 кубических метров (10х10х0,25). Столько же бетона потребуется для заливки фундамента. Необходимо учесть и установку ребер жесткости, служащих для повышения устойчивости к деформациям. Они располагаются с шагом в три метра вдоль и поперек плиты, создавая в ней квадраты.

Для расчета плитного фундамента следует определиться с длиной и высотой ребер жесткости. Первый показатель устанавливается в соответствии с длиной каждой стороны основания и в рассматриваемом примере составляет 10 метров. Всего потребуется 8 ребер, поэтому общая длина составит 80 метров.

Поперечное сечение выполняется в форме трапеции или прямоугольника. По стандарту, ширина ребра должна составлять 0,8 от высоты. Для прямоугольных ребер общий объем составит 0,25х0,8х80 = 16 кубометров. У трапециевидных ребер нижнее основание равно 1,5 толщины фундамента, верхнее – 0,8. В рассматриваемом примере площадь трапециевидного поперечного сечения будет равна (0,8+1,5)/2х0,25=0,15 квадратных метров, а объем всех ребер составит 0,15х80=12 кубических метров.

Из рассмотренного примера видно, что для заливки монолитного плитного фундамента толщиной 25 см и размером 10х10 метров потребуется 25 кубических метров бетона. Эту величину совсем несложно рассчитать самостоятельно, чтобы определиться с затратами, которые потребуются для обустройства фундамента.

Толщина плитного фундамента – очень важный показатель, обеспечивающий его прочность и надежность. Она зависит от многих факторов и может изменяться на разных грунтах или для разных построек. Поэтому, чтобы возвести действительно крепкий дом, необходимо с повышенным вниманием отнестись к расчету толщины его плитного основания.

Читайте также:

Обзор конструкции опорной плиты и анкерного стержня

, автор Javier Encinas, PE

15 января 2020 г. # 1 , Блоджетт Учебник «Проектирование сварных конструкций» и код ACI 318 . В этой статье представлена ​​инженерная основа современной философии проектирования опорных плит и анкерных стержней колонн.

 — Нажмите здесь, чтобы загрузить бесплатную 15-дневную пробную версию ASDIP STEEL.

Опорные плиты представляют собой конструктивные элементы в нижней части колонн, предназначенные для распределения сосредоточенной нагрузки на большую опорную площадь, чтобы напряжения смятия находились в допустимых пределах. В зависимости от типа рамы, к которой относится колонна, опорная плита может подвергаться сжатию, растяжению, изгибу и сдвигу. На практике большинство колонн представляют собой W-образные сечения, подвергающиеся сжатию, сдвигу и изгибу вокруг сильной оси, но также распространены колонны из быстрорежущей стали при двухосном изгибе.

Совместимость штаммов. Какую теорию использовать?

Существует две основные теории проектирования опорной плиты: одна основана на Руководстве по проектированию AISC № 1 и предполагает, что опорная плита является гибкой, поэтому совместимость деформаций игнорируется. Эта теория дает уравнения для двух случаев: когда эксцентриситет e < L/6 и когда e > L/6. Переход между этими двумя случаями не является гладким, и результаты могут сильно различаться для немного различающихся эксцентриситетов на пограничной линии двух случаев.

Вторая теория основана на учебнике Blodgett’s и предполагает, что пластина является жесткой, и, следовательно, плоские участки остаются плоскими после изгиба, поэтому обеспечивается совместимость деформации.

Эта теория дает согласованные уравнения для любых значений эксцентриситета, как показано на графиках ниже. Обратите внимание на резкие изменения как натяжения стержня, так и толщины пластины в соответствии с подходом AISC для эксцентриситетов вблизи керна. Кажется, что уравнения подхода AISC необходимо дополнительно уточнить, чтобы получить согласованные результаты для любого эксцентриситета. ASDIP STEEL выполняет расчеты по любой теории.

Конструкция опорной плиты.

Для сжатых колонн, подверженных малым моментам, в анкерных стержнях нет натяжения, поэтому цель состоит в том, чтобы удерживать опорное давление бетона в допустимых пределах, как показано на левом рисунке ниже. В этом случае максимальный момент плиты будет создаваться опорным давлением, действующим вверх на консольную часть плиты. Для плит с небольшими консолями максимальный момент плиты возникает между полками W-образной колонны.

По мере увеличения приложенного момента сжимается только часть пластины, а анкерные стержни обеспечивают необходимое натяжение для поддержания статического равновесия, как показано на правом изображении ниже. В этом случае максимальный момент плиты будет создаваться наихудшим случаем: а) опорного давления, действующего вверх на консольную часть плиты, или б) силы натяжения, действующей на эффективную площадь под углом 45 градусов к поверхности колонны.

После того, как расчетный момент известен, соответственно рассчитывается толщина листа. Увеличение толщины листа на 1/4 дюйма (6 мм) и увеличение размера листа на 1 дюйм (25 мм) являются обычной практикой. Подушка для цементного раствора обычно предназначена для выравнивания плиты на бетонной опоре.

Конструкция крепления.

Анкерные стержни обычно используются для соединения опорной плиты колонны с бетонной опорой. Методика ACI 318 заключается в расчете анкерных стержней на растяжение и на сдвиг отдельно, а затем проверке эффектов взаимодействия.

Расчет анкерных стержней на растяжение предусматривает проверку предельных состояний прочности стали, прорыва бетона, вырыва и выброса в забой. Расчет прорыва особенно важен, поскольку разрушение бетона будет непластичным, и поэтому его следует избегать. Анкерная арматура может быть предусмотрена во избежание разрушения при прорыве, и в этом случае натяжение полностью воспринимается арматурными стержнями. ASDIP STEEL выполняет все эти проверки кода и создает графическое представление области разрыва напряжения.

При сдвигающих нагрузках от малых до умеренных можно использовать анкерные стержни для передачи усилия сдвига на фундамент. В этом случае проверяемые предельные состояния включают прочность стали, прорыв бетона и выдавливание бетона. Поскольку отверстия в пластине слишком велики, маловероятно, что все стержни будут упираться в пластину, сопротивляясь сдвигу.

Если шайбы не приварены к пластине, для целей расчета эффективны только передние стержни. Для предотвращения хрупкого разрушения может быть предусмотрено усиление анкера. ASDIP STEEL выполняет все эти проверки норм и создает графическое представление области разрыва при сдвиге.

Более подробный обзор конструкции анкерного крепления см. в публикации блога «Конструкция анкерного болта — Комплексные положения ACI». Ниже приведен типичный отчет о конструкции анкерного крепления из стали ASDIP STEEL . Обратите внимание, что взаимодействие растяжения и сдвига обычно влияет на конструкцию анкерных стержней.

Вывод

Конструкция опорной плиты очень важна, особенно для несущих колонн, подвергающихся сжатию, сдвигу и изгибу. Конструкция анкерных стержней предполагает многократные проверки предельного состояния на растяжение и сдвиг. ASDIP STEEL включает в себя конструкцию опорных плит и анкерных стержней с несколькими вариантами, позволяющими легко оптимизировать конструкцию.

Подробную информацию об этом программном обеспечении для проектирования конструкций можно получить на сайте ASDIP STEEL. Пример конструкции см. в разделе Пример конструкции опорной плиты и анкерных стержней с использованием ASDIP STEEL. Чтобы ознакомиться с нашей коллекцией статей в блогах о конструкции опорной плиты и крепления, посетите страницу Дизайн анкерных стержней.

Вам предлагается загрузить бесплатную 15-дневную пробную версию программного обеспечения или оформить заказ.

С уважением,

Хавьер Энсинас, PE

ASDIP Structural Software

Начать 15-дневную пробную версию

Посмотреть цены

Соединение колонны из быстрорежущей стали с осевой нагрузкой и опорной плитой

Ким Олсон, PE
Технический консультант, Институт стальных труб

Детализация колонны из быстрорежущей стали к несущему бетонному фундаменту является одним из наиболее определенных соединений в структуре. В процессе изготовления элемент из быстрорежущей стали обычно распиливают, чтобы создать плоскую поверхность элемента для передачи конструкционных нагрузок на опорную плиту. Соединение быстрорежущей стали с опорной плитой, обычно сварным швом, зависит от нагрузки и ее величины. Под опорную плиту заливается раствор для обеспечения равномерного прилегания плиты к бетонному основанию. Анкерные болты предназначены для сопротивления временным монтажным нагрузкам, присутствующим во время строительства, а также комбинированным усилиям сдвига и подъема, передаваемым через соединение из-за требований к структурной нагрузке здания.

Рисунок 1 – Опорные плиты из быстрорежущей стали с двумя различными конфигурациями анкерных болтов

Осевая сжимающая нагрузка:

Опорные плиты для круглых и прямоугольных колонн из быстрорежущей стали, воспринимающие сжимающие нагрузки, могут быть рассчитаны только с использованием общепринятых положений, разработанных для широкополочных (WF) колонн, в первую очередь Руководство по проектированию AISC 1. Этот метод проектирует опорную плиту на основе консольного выступа опорной плиты из стен HSS. Расположение критической секции изменено для секций HSS (см. рис. 2). В Руководстве по проектированию 1 указано, что расстояния «m» и «n» для круглых HSS могут быть определены с использованием консольной проекции, равной 0,8 наружного диаметра. Для прямоугольного HSS выступ консоли можно принять равным 0,9В 5 раз больше внешнего размера HSS. Обратите внимание, что консольная проекция λn, приемлемая для колонн WF, не может использоваться для колонн из быстрорежущей стали в соответствии с Руководством по проектированию 1 AISC. Чтобы уменьшить прогиб опорной плиты, рекомендуемая минимальная толщина опорной плиты составляет примерно одну пятую от консольной проекции, м» или «н». Соединение быстрорежущей стали с опорной плитой может быть выполнено с минимальным угловым сварным швом по всему периметру. Если колонна находится в чистом сжатии и анкерные болты не расположены по углам опорной плиты, угловой шов требуется только вдоль рабочей плоскости колонн из быстрорежущей стали. Однако, если болты расположены по углам опорной плиты и колонн из быстрорежущей стали, сварка требуется в углах из быстрорежущей стали, поскольку критическая линия текучести будет образовываться в плите по углам из быстрорежущей стали.

Рис. 2-AISC (1997)

Осевая растягивающая нагрузка:

Исследователи провели достаточное количество испытаний колонн с широкими полками на условия подъемной нагрузки для создания действующих процедур расчета. К сожалению, аналогичные процедуры для столбцов HSS недоступны. Процедура с широкими полками не может быть напрямую перенесена на опорные плиты для колонн из быстрорежущей стали, поскольку геометрия соединения требует, чтобы расположение анкерных болтов отличалось от колонны. Анкерные болты для колонн WF могут быть размещены близко к стенке, в пределах глубины элемента, что сводит к минимуму плечо изгибающего момента внутри плиты. В случае опорной плиты колонны из быстрорежущей стали анкеры должны располагаться на расстоянии от поверхности колонны по периметру опорной плиты, чтобы можно было затянуть гайку анкерного болта во время установки. Если опорная плита не является жесткой (т. е. толстой), анкерные болты будут подвергаться подрывному действию, которое необходимо учитывать при проектировании.

Обратите внимание на процедуру расчета опорной плиты AISC Design Guide 1 для колонн WF, если она используется для колонн из быстрорежущей стали, предполагается, что плоскость изгиба на лицевой стороне колонны из быстрорежущей стали и часть плиты за колонной выступает в качестве консоли. Размер между анкерным болтом и плоскостью изгиба представляет собой плечо момента, которое следует использовать при расчете толщины опорной плиты. В этом процессе используется более широкая эффективная ширина и меньшее плечо момента, что приводит к более тонкой опорной плите, что может быть неконсервативным.

Рисунок 3 – Типичное расположение анкерных болтов из быстрорежущей стали, плоскость разрушения и эффективная ширина

Здесь представлен разумный подход к проектированию опорной плиты для колонны из быстрорежущей стали под подъемной нагрузкой, предполагающий, что анкерные болты размещаются рядом с каждым углом опорной плиты (см. рис. 3). Задача в этой задаче — найти плоскость разрушения и соответствующую ей эффективную ширину. Как показано на рисунке 3, предположим, что плоскость разрушения расположена в углу колонны. Эффективную ширину трудно определить, но один из вариантов — использовать плоскость изгиба под углом 45 градусов для эффективной ширины. В качестве альтернативы, в Руководстве по соединениям полых структурных секций AISC рекомендуется эффективная ширина 2L с максимальной шириной 5 дюймов.

В качестве альтернативы анкерные болты можно расположить с двух сторон прямоугольной колонны (см. рис. 4). В этом случае опорная плита может быть рассчитана с использованием положений, разработанных для соединения торцевой плиты, опять же с учетом подталкивающего действия. Аналогичным образом положения конструкции торцевой пластины могут быть использованы для круглой колонны при подъеме с не менее чем четырьмя анкерными болтами, симметрично расположенными вокруг колонны.

Рисунок 4 – Альтернативное расположение анкерных болтов

Наиболее экономичным соединением между колонной из быстрорежущей стали и опорной плитой является угловой сварной шов. Для элемента, нагруженного растяжением, где нагрузка перпендикулярна оси сварного шва, увеличение направленной прочности (AISC 360-16, раздел J2.4b) не должно применяться. Недавние испытания (Packer, 2016) пришли к выводу, что при включении коэффициента увеличения направленной прочности в расчет прочности угловых сварных швов из быстрорежущей стали с опорными плитами адекватные коэффициенты безопасности не достигаются. Если угловой шов не соответствует требуемой нагрузке, лучше всего использовать сварной шов с частичным проплавлением, с усилением или без него. Хотя указание сварного шва с полным проплавлением может быть экономичным для проектирования, это совсем не экономично для изготовления и контроля, поэтому его следует избегать. Обратите внимание, что углы колонн из быстрорежущей стали должны быть сварены для колонн, передающих момент или напряжение.

Ссылки:

AISC, 1990, Руководство по проектированию стали, серия 1: Плиты основания колонн, AISC, Чикаго, Иллинойс.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *