Балансировка батарей: Балансировка аккумуляторов — быстро и качественно

Системы баланса Li-ion аккумуляторных батарей

Необходимость балансировать (нивелировать) напряжения на Li-ion аккумуляторах в батарее вытекает из следующих соображений:

  • Напряжение, ниже которого мы не можем разряжать отдельно взятый аккумулятор в батарее, состоящей из последовательно соединенных аккумуляторов, лежит в пределах 2,4–2,8 В (в зависимости от рекомендаций их производителя).
  • Напряжение, выше которого мы не можем заряжать отдельно взятый аккумулятор, лежит в пределах 4,1–4,3 В.

Работа в указанных пределах напряжений дает гарантию долгой и безопасной эксплуатации аккумуляторов, за этим обычно «следит» контроллер аккумуляторной батареи.

В аккумуляторную батарею (АБ) стараются подобрать аккумуляторы, близкие по емкости (например, батарея может состоять из 4 аккумуляторов емкостью 10,12; 10,17; 10,19 и 10,21 А·ч). При сборке АБ учитывают, что напряжения на аккумуляторах должны иметь как можно более близкие значения (для нашего примера: 3,785; 3,784; 3,783 и 3,782 В).

Однако зарядить их до определенного напряжения можно с некоторой точностью (например, ±0,01 В). К тому же, сами аккумуляторы, даже вышедшие с конвейера друг за другом, имеют немного отличающиеся характеристики: внутреннее сопротивление, токи саморазряда в режиме хранения, скорость деградации электродных материалов и т. д.

Рис. 1. «Окно» разбаланса, снижающее емкость АБ

При заряде/разряде все эти факторы приводят к появлению «окна», которое равно разности между напряжениями самого заряженного и самого разряженного аккумулятора (рис. 1), то есть напряжения, которые были примерно одинаковыми для всех аккумуляторов вначале, постепенно «разбегаются». При расширении этого «окна» емкость самой батареи начинает снижаться, поэтому заряд батареи необходимо будет прекратить, как только один из аккумуляторов достигнет конечного зарядного напряжения, то же самое произойдет и при разряде. В конечном итоге из-за расширения «окна» емкость самой батареи может достигнуть нуля, если не предпринимать определенных мер.

Хоть как-то выйти из положения и продлить срок эксплуатации батареи без вмешательства извне может помочь система сведения этого «окна» к минимуму.

Системы баланса (СБ) можно разделить на несколько классов, которые взаимно пересекаются, дополняют друг друга, поэтому иногда трудно найти нужное решение при проектировании аккумуляторной батареи.

Системы баланса можно разделить по способу управления:

  • управляемые;
  • автономные.

Автономные системы баланса могут работать постоянно при заранее заданных условиях (например, в определенном диапазоне напряжений на аккумуляторной батарее), вне зависимости от того, идет заряд, разряд или батарея находится в режиме покоя, и даже вне зависимости от того, есть ли разбаланс на аккумуляторах (если разбаланса нет, то СБ работает вхолостую, разряжая батарею в режиме хранения, тогда ее лучше отключить). Автономные СБ могут работать и в определенные периоды времени, например, только при заряде АБ, имея свой датчик тока.

Автономность здесь означает прежде всего то, что система баланса не зависит от других электронных блоков, входящих в состав или обеспечение аккумуляторной батареи, и работает самостоятельно как отдельный блок.

Рис. 2. Автономная система баланса Li-ion АБ

Отсюда вытекают преимущества такой системы баланса. Автономные СБ обычно более просты как по своему строению, изготовлению, ремонту, так и при их модернизации. Когда автономная СБ функционирует как отдельный блок (рис. 2), ее можно протестировать и в случае необходимости отключить или заменить, не затрагивая работу всей системы, просто выдернув такую СБ из соединительного разъема. Поэтому саму систему контроля АБ можно значительно упростить, она будет следить только за напряжениями на отдельных аккумуляторах в составе АБ и током, протекающим через датчик тока. (В данном случае в качестве датчика тока используется сенсорный резистор

Rsns). Устройство контроля управляет силовыми ключами (обычно это MOSFETы, для батарей небольшой емкости или с малыми токами разряда). Простейшую схему построения СБ можно рассмотреть на примере АБ, состоящей из двух аккумуляторов (рис. 3).

Рис. 3. Пример реализации автономной пассивной системы баланса Li-ion АБ из двух аккумуляторов на компараторах

Компараторы DA1 и DA2 сравнивают напряжение общей точки G1 и G2 с общим напряжением на батарее и управляют балансировочными ключами К1 и К2 в зависимости от напряжений на аккумуляторах. Аккумулятор G1 (или G2) разряжается на резистор R4 (или R5).

К недостаткам автономных СБ можно отнести невысокую точность нивелирования аккумуляторов, из-за достаточно простого построения таких СБ. Если автономную СБ сделать, например, на основе более сложных средств измерения напряжения, то такая система станет избыточной, и блок измерения напряжений будет дублироваться, как в СБ, так и в контроллере управления АБ. (Хотя такой вариант не исключен полностью, все зависит от целей построения стратегии модернизации.)

Управляемые СБ, в отличие от автономных, не функционируют как отдельный блок, а управляются извне устройством (обычно модулем контроля и управления (МКУ) работой АБ). В зависимости от того, каким образом построена СБ и каков алгоритм работы МКУ, она может функционировать как на заряде, так и при определенных условиях на разряде и в режиме покоя. Управляя СБ извне и имея более сложный алгоритм управления в самом МКУ, можно добиться лучших результатов по нивелированию аккумуляторов в составе АБ. Для экономии энергии АБ в период покоя МКУ может отключить физически СБ от питания, а при необходимости — снова включить СБ и управлять нивелированием отдельных аккумуляторов.

По своему строению управляемые СБ в общем случае более сложные: не только по способу управления — необходим алгоритм управления, но и по физическому исполнению. Они оснащены дополнительными элементами управления, имеют дополнительные проводники (или разъем со шлейфом проводов) от МКУ.

Рис. 4. Пассивная, управляемая система баланса Li-ion АБ

Пример построения управляемой СБ представлен на рис. 4. Хотя эта схема и выглядит проще, чем пример неуправляемой СБ, тем не менее, в состав АБ должен входить контроллер (обычно микроконтроллер), имеющий свой алгоритм управления такой СБ.

Балансировочные резисторы R1–R4 замыкаются ключами К1–К4 по команде устройства контроля.

Следующее разделение по способу размещения:

  • в составе АБ;
  • вне состава АБ.

В составе АБ. СБ, входящие в состав АБ, являются неотъемлемой частью батареи и располагаются внутри корпуса вместе с аккумуляторной сборкой, а чаще всего на одной плате с модулем контроля (МКУ). Особенность таких СБ — их относительная компактность, то есть незначительные масса и габариты по сравнению со всей АБ (для батарей важный показатель — удельные параметры: Вт·ч/кг, Вт·ч/дм3). Из этого следуют отличия таких СБ: они имеют малые токи нивелирования (следствие ограниченности массо-габаритных параметров, отведенных под СБ при проектировании АБ). Действительно, при стационарной системе можно позволить, чтобы СБ была сравнима по весу и габаритам с зарядным устройством, но при создании переносных приложений вряд ли кто-нибудь будет мириться с этим.

Малые токи нивелирования (от сотен мкА до сотен мА) компенсируются тем, что СБ постоянно расположена рядом с аккумуляторами.

АБ чаще всего находится в режиме покоя. (Обычно период заряда/разряда относительно невелик по сравнению с периодом покоя. Поэтому, обходясь небольшими токами нивелирования, СБ удается предотвратить «разбегание» аккумуляторов за счет более длительного времени балансирования, если СБ работает в режиме покоя АБ, или более длительного времени заряда. Ток заряда при этом выбирают в пределах 0,07–0,15 Сн от емкости АБ).

Если в состав АБ входит встроенная СБ, то при достаточно большом разбалансе напряжений на аккумуляторах АБ необходимо заряжать малым током длительное время. Отношение тока заряда к току баланса выбирается таким, чтобы МКУ было чувствительно к зарядному току и четко идентифицировало, что происходит заряд и время заряда приемлемо (например, не более 24 часов).

Встроенные в АБ СБ чаще всего конструктивно изготавливаются из резистора и управляемого от МКУ ключа (для одного аккумулятора), замыкающего резистор N-го аккумулятора. Такие системы работают обычно только при заряде (рис. 4).

Встроенные СБ имеют свою нишу в построении АБ на основе Li-ion аккумуляторов. С одной стороны, они практически не увеличива- ют массо-габаритные показатели всей АБ (при емкости АБ не более 15 А·ч), упрощают структуру зарядного устройства (ЗУ), но, с другой стороны, для их эффективного использования необходимо увеличивать время заряда. Эти проблемы можно решить с помощью размещения СБ вне АБ.

Вне состава АБ. К СБ за пределами АБ уже не предъявляются жесткие требования по массо-габаритным показателям, поэтому такие СБ имеют токи нивелирования более высокие, чем при встроенной СБ. Спроектировать СБ вне АБ можно так, что она позволит нивелировать практически любой разбаланс чуть ли не за один цикл заряда номинальным током.

Конструктивно СБ вне состава АБ чаще всего располагается в одном корпусе с зарядным устройством (ЗУ). Такие СБ также могут быть как управляемыми, так и неуправляемыми, и создаются по различным способам балансирования (пассивные или активные).

К достоинствам СБ вне АБ можно отнести уменьшение массо-габаритных показателей АБ за счет выноса СБ за границы АБ. К недостаткам — увеличение тех же параметров ЗУ и количества проводников (жил), идущих от ЗУ к АБ (для N аккумуляторов дополнительно N+1 жила), а также контактов в выходном разъеме АБ. К тому же, каждый выведенный контакт от аккумулятора необходимо защищать как минимум предохранителем (плавким или самовосстанавливающимся), чтобы пользователь по неосторожности не замкнул эти концы при присоединении ответной части разъема. Сами предохранители должны находиться внутри АБ, что также занимает место и пространство внутри АБ, особенно при числе аккумуляторов более двух.

Если СБ управляется от внутреннего контролера АБ, то число контактов в разъеме заряда необходимо будет увеличить или ввести одно- или двухпроводный интерфейс обмена данными между СБ и контроллером АБ. Дополнительный интерфейс обмена данными также усложнит всю систему, как аппаратно, так и программно.

Пример неуправляемой СБ вне АБ показан на рис. 5.

Рис. 5. Неуправляемая система баланса вне АБ, совмещенная с зарядным устройством

АБ соединяется с зарядным устройством и с СБ через разъем Х1. СБ питается от ЗУ, отбирая часть тока на свои нужды, что необходимо учесть при проектировании ЗУ. Предохранители FU1–FU4 служат элементами защиты. Балансирование аккумуляторов осуществляется только в момент заряда или при присоединении к АБ разъема Х1, если такой алгоритм предусмотрен для СБ разработчиками, то есть балансирование осуществляется вне зависимости, идет ток заряда или нет.

Неуправляемая внешняя СБ ни при каких обстоятельствах не должна иметь возможности перезарядить любой из аккумуляторов выше установленного уровня (4,15–4,3 В) при нивелировании, иначе необходимо будет ввести еще один провод управления от внутреннего контроллера АБ на отключение СБ или предусмотреть специальную команду по интерфейсу. Введение дополнительного проводника или команд еще более усложняет систему, и внешняя неуправляемая СБ постепенно превратится в управляемую внешнюю СБ. Каким образом СБ может осуществить перезаряд отдельного аккумулятора, станет ясно после рассмотрения способов балансирования.

По способу балансирования СБ можно разделить на:

  • пассивные;
  • активные.

Пассивные СБ. Пассивные СБ отличаются тем, что часть энергии аккумулятора с бóльшим напряжением они рассеивают в виде тепла в окружающее пространство. При заряде, отбирая часть энергии (тока), такая СБ уменьшает ток заряда нивелируемого аккумулятора, уменьшая скорость заряда до тех пор, пока не зарядятся все остальные.

Такую СБ можно построить с помощью уже упоминавшегося резистора необходимой мощности и управляемого ключа (твердотельного реле, например, PVG612). Получится пассивная управляемая СБ (рис. 4). Нивелирование можно осуществлять практически на протяжении всего времени заряда.

Другой способ построения пассивной СБ—с помощью стабилитрона. Мощный стабилитрон можно собрать на основе микросхемы TL431 и транзистора с мощным резистором, на которых и будет рассеиваться выделяемое тепло. Это пассивная автономная СБ. Когда напряжение на аккумуляторе достигнет определенного уровня (например, 4,1 В), через транзистор потечет некоторый ток, уменьшая ток заряда аккумулятора. Остальные аккумуляторы будут заряжаться прежним током и «догонят» через некоторое время этот аккумулятор. Необходимо отметить, что нивелирование здесь будет происходить только в конце заряда, когда аккумуляторы приблизятся к порогу срабатывания стабилитронов. Время заряда при такой СБ увеличится, за счет того, что токи через аккумуляторы будут уменьшаться по мере их заряда. Тем не менее, такую систему баланса применяют из-за ее простоты.

Каждый из приведенных вариантов пассивной СБ можно разместить как в составе АБ, так и вне его. Когда применяют пассивный способ балансирования и СБ находится в составе АБ, обычно токи нивелирования невелики по понятным причинам: происходит рассеивание тепла внутри корпуса АБ. При использовании СБ вне АБ необходимо учитывать падение напряжения на контактных соединителях, проводах и т. д.

К достоинствам пассивных СБ можно отнести простоту реализации, к недостаткам — рассеивание энергии в виде тепла (использование радиаторов, вентиляторов и т. д. для отвода тепла), что приходится учитывать, чтобы не перегреть сами аккумуляторы. Особенно, если АБ должна работать при температурах окружающей среды до +50 °С и СБ находится внутри корпуса АБ или в непосредственной близости от аккумуляторов.

Активные СБ. Активные СБ отличаются тем, что они перераспределяют энергию от аккумуляторов с наибольшими напряжениями к аккумуляторам с наименьшими напряжениями. Такое перераспределение можно осуществить разными способами.

Рис. 6. Способы активного нивелирования напряжений АБ на DC/DC-преобразователях

Например, их можно построить следующим образом (рис. 6):

  • От аккумулятора с наибольшим напряжением энергия отдается всей цепочке аккумуляторов в составе АБ.
  • Энергия от всей цепочки аккумуляторов передается аккумулятору с наименьшим напряжением.

На рис. 6 изображена ситуация, когда АБ работает на нагрузку (для наглядности не изображены другие три преобразователя энергии). В первом случае ток I3 станет меньше тока нагрузки I4, а значит, аккумуляторы G2–G4 будут разряжаться медленнее (G1 здесь имеет самое высокое напряжение из всех четырех), во втором больше, аккумуляторы G2–G4 будут разряжать быстрее (G1 здесь имеет самое низкое напряжение из всех четырех). В качестве преобразователей энергии используют DC/DC-преобразователи.

Второй способ, по мнению автора, предпочтительнее по следующим причинам. Во-первых, если использовать управляемую активную СБ, при разряде АБ, состоящей из 8 последовательно включенных аккумуляторов, «проваливаются» по напряжению чаще всего не более одного-двух по истечении некоторого времени эксплуатации АБ (деградация аккумулятора). Можно снизить нагрузку на эти аккумуляторы, пуская в них ток, берущийся из всей цепочки. При этом мы задействуем всего 1–2 преобразователя (при первом способе их было бы 6–7, так как пришлось бы брать энергию от аккумуляторов с нормальными напряжениями и отдавать эту энергию в нагрузку). Необходимо учитывать, что каждый преобразователь имеет свой КПД. Построить СБ по второму способу перераспределения значительно легче: можно использовать один преобразователь и ключи (на рис. 6 показаны пунктиром), подключающие его к нужному аккумулятору. Так как «проваливается» всего 1–2 аккумулятора, одного преобразователя при втором способе перераспределения энергии может оказаться достаточно (его можно подключать попеременно то к одному, то к другому «провалившемуся» аккумулятору), чего не скажешь о первом способе перераспределения, где необходимо будет задействовать несколько преобразователей. Таким образом, СБ может не только балансировать, но и «продлевать» разряд АБ, и ее емкость будет падать не так значительно при некоторой деградации 1–2 аккумуляторов. «Продлевать» разряд — в смысле уменьшать нагрузку (если ток разряда больше тока, отдаваемого от преобразователя в аккумулятор) на единичный аккумулятор, который, в свою очередь, будет медленнее разряжаться и достигнет конечного разрядного напряжения за более длительное время (при постоянной нагрузке), чем без преобразователя.

Во-вторых, при заряде токи, отдаваемые от преобразователей всей цепочке аккумуляторов (при первом способе), будут суммироваться с зарядным током, что необходимо учитывать, так как общий ток заряда возрастет.

Рис. 7. Пример реализации активной системы баланса

В-третьих, СБ, построенную по второму способу, легче реализовать аппаратно (рис. 7). Здесь показан DC/DC-преобразователь, сделанный для двух аккумуляторов. Вторичные обмотки намотаны на один сердечник (число обмоток может доходить до десятка). Энергия перераспределяется в сердечнике, и самый разряженный аккумулятор в цепочке будет получать больше энергии, чем самый заряженный.

К достоинствам активных СБ можно отнести: высокий КПД, не рассеивание значительного количества тепла (особенно при емкостях АБ 50–300 А·ч и более и токах балансировки 3–7 А), как при пассивных СБ, продление срока службы АБ.

К достоинствам следует отнести и тот факт, что активная СБ может быть использована в качестве устройства подзаряда, что особенно важно для бесперебойных источников питания на основе Li-ion аккумуляторов. В таком случае СБ можно питать от сети 220 В, а не от АБ, и она может попеременно (или сразу, в зависимости от исполнения) по командам МКУ или самостоятельно (автономная СБ) подзаряжать как отдельные аккумуляторы, так и все вместе, выполняя и совмещая функцию системы баланса (СБ) и зарядного устройства (ЗУ).

К недостаткам нужно отнести относительную сложность и дороговизну исполнения такой СБ, значительное увеличение уровня шума и помех при работе DC/DC-преобразователя. Увеличение помех требует более сложной системы измерения напряжений на аккумуляторах, экранирования, фильтрации, продуманности расположения балансира и МКУ и т. д., что также ведет к некоторому удорожанию всей системы обеспечения батареи.

Другой способ реализации показан на рис. 8.

Рис. 8. Структурная схема активной СБ: в качестве промежуточного накопителя энергии используется конденсатор С

Конденсатор С заряжается от цепочки наиболее заряженных аккумуляторов (например, от G1–G3), через ключи К7, К1, а разряжается на один аккумулятор G4, ключи К6, К8. При заряде конденсатор может заряжаться от напряжения всей АБ, через ключи К1, К8. Резистор ограничивает бросок тока при заряде или разряде конденсатора, чтобы не перегружать ключи К1–К8. Такая система баланса была выполнена автором на основе MSP430F1232, этот микроконтроллер обладает широкими возможностями по управлению своим внутренним энергопотреблением. MSP430F1232 имеет на своем борту АЦП и позволяет измерять напряжение на аккумуляторах через резистивные делители (на схеме не показаны). Балансир управляется извне МКУ, но может и самостоятельно принимать решения при определенном разбалансе напряжений, в определенном диапазоне напряжений на аккумуляторах, и осуществлять балансировку. МКУ имеет возможность принудительно отключить балансир. В результате получается управляемо-автономный балансир.

Стоит упомянуть о еще одном способе балансировки и отнести его к активному. Дело в том, что некоторые проектировщики АБ вообще не используют СБ, а заряжают каждый аккумулятор своим зарядным устройством. Схема такого способа выглядит так же, как и на рис. 5, только вместо СБ и одного ЗУ присутствуют 4 ЗУ (обычно в одном корпусе и имеют единую систему индикации конца заряда). В конце заряда все аккумуляторы будут иметь одинаковое напряжение. Такой способ применяют, когда АБ состоит из 2–3 последовательно соединенных аккумуляторов средней емкости (10–30 А·ч). При этом цена на все ЗУ не так сильно возрастает, но зато не нужно вообще «связываться» с СБ.

Существуют также комбинированные СБ—активно-пассивные. Часть аккумуляторов (например, цепочка из четырех последовательно соединенных) балансируются активным способом, а внутри цепочки каждый аккумулятор — пассивным. Такой метод можно применять для относительно высоковольтных батарей, состоящих из нескольких десятков последовательно соединенных аккумуляторов, причем активная и пассивная части могут находиться как в составе, так и вне АБ.

В заключение отметим, что для АБ небольшой емкости выпускаются специализированные микросхемы для литиевых батарей, которые обычно имеют встроенную пассивную систему баланса. Для АБ большой емкости необходимо проектировать СБ самостоятельно. Без СБ АБ начнет постепенно терять емкость из-за «разбега» напряжений.

Активные и пассивные системы баланса Li-ion АБ

Введение

Как известно, при работе с Li-ion аккумуляторами следует соблюдать определенные режимы их эксплуатации. В частности, производитель аккумулятора четко регламентирует граничные значения напряжений заряда и разряда. Таким образом, при формировании Li-ion аккумуляторных батарей (АБ) из последовательно соединенных ячеек возникает необходимость нивелирования разброса напряжений между ячейками. Это обусловлено тем, что, с одной стороны, при разряде батареи по достижении хотя бы одной из ячеек граничного напряжения разряда необходимо отключить всю АБ от нагрузки, так как дальнейший ее разряд повлечет нарушение требований режима эксплуатации для этой ячейки. Однако при наличии существенного разброса по напряжению между ячейками АБ в недоразря-женных ячейках все еще остается некоторый запас энергии, использовать который, очевидно, не представляется возможным. С другой стороны, при заряде возникает обратная ситуация. По достижении хотя бы одной из ячеек граничного напряжения заряда необходимо отключить АБ от зарядного устройства с целью предотвращения выхода этой ячейки за границы требований режима эксплуатации. В данном случае, при наличии существенного разброса по напряжению между ячейками АБ, некоторые из ячеек оказываются существенно недозаряженными. Таким образом, оказывается невозможным использовать всю потенциальную емкость АБ.

Возникновение разброса по напряжению между ячейками АБ в процессе ее эксплуатации может являться следствием соответствующего разброса значений емкости ячеек, а также различной скорости их саморазряда. Причиной возникновения разброса значений этих параметров являются индивидуальные особенности аккумуляторов, входящих в ее состав. При изготовлении АБ, конечно же, осуществляется подбор аккумуляторов с очень близкими (до 1-3%) значениями емкости и прочих характеристик, однако практически невозможно предугадать, как будут меняться характеристики аккумулятора в процессе его старения и выработки ресурса. Кроме того, эксплуатация АБ в критических режимах или близких к таковым негативно скажется на характеристиках аккумуляторов, но степень влияния такого рода фактора для разных экземпляров аккумуляторов будет различной.

Все сказанное выше предопределяет неизбежность столкновения разработчиков АБ с проблемой разброса значений напряжения ее ячеек, или, как часто говорят, с проблемой разбаланса АБ. Причем эта проблема встает тем острее, чем больше последовательно соединенных ячеек в АБ. Для решения этой проблемы применяют системы баланса АБ, основной задачей которых является сведение к минимуму разброса по напряжению между ячейками. Таким образом, при разряде или заряде все ячейки АБ достигают установленных пределов почти одновременно, что позволяет в полной мере использовать потенциал батареи.

Системы баланса (СБ) как таковые можно классифицировать по нескольким признакам: различают управляемые и неуправляемые СБ, входящие в состав АБ и внешние. Однако прежде всего СБ подразделяют на два типа — активные и пассивные. Конечно же, существуют разные способы реализации СБ каждого из этих типов. Например, активные СБ могут быть трансформаторными или емкостными [1].

В настоящее время производители реализуют различные подходы к построению СБ. Выбор в каждом конкретном случае определяется требованиями (техническими, эксплуатационными, экономическими и др.), предъявляемыми к АБ в целом, а также особенностями ее построения. Далее мы рассмотрим основные принципы работы активных и пассивных СБ и выделим основные факторы, которые должны быть приняты во внимание при выборе того или иного подхода к построению СБ.

Итак, любая СБ должна осуществлять балансировку АБ, то есть стремиться уменьшить (а в идеальном случае — свести к нулю) разброс значений напряжений на аккумуляторах, входящих в состав АБ. Работа СБ позволяет избегать описанных выше проблем, связанных с разбалансом, что положительно сказывается на величине отдаваемой емкости АБ, а также, в долгосрочной перспективе, увеличивает ее ресурс.

Перед тем как перейти к принципам работы СБ различных типов, рассмотрим процессы, протекающие в АБ. На рис. 1 показана зависимость напряжения на аккумуляторе от степени его заряженности. На графике приведены кривые, полученные при заряде током 0,5Сн аккумулятора с положительным электродом на основе кобальтата лития при различных значениях температуры, и именно такой аккумулятор мы будем рассматривать в качестве наглядного примера. (Аккумуляторы с другими материалами имеют другие значения зависимости, где необходимо применять иные алгоритмы балансировки, но суть изложенного остается той же.)

Рис. 1. Зависимость напряжения на аккумуляторе от степени заряда при заряде током 0,5Сн

Считается, что аккумулятор, изготовленный из определенных материалов (электролит, электродные массы), при определенной степени заряженности имеет вполне определенное значение напряжения с небольшой поправкой на температуру. Причем это значение не зависит от значения емкости аккумулятора, будь то аккумулятор от мобильного телефона емкостью в 1 А·ч, высокоемкий аккумулятор емкостью 100 А·ч или тот же высокоемкий аккумулятор, деградировавший в процессе эксплуатации и имеющий емкость 93 А·ч.

Хотя, как уже говорилось выше, при производстве АБ применяются строгие методики отбора аккумуляторов для минимизации разброса по параметрам между аккумуляторами в рамках одной АБ, со временем, в силу различных факторов, все-таки возникает некоторый разброс по емкости. Ясно, что в начале эксплуатации АБ этот разброс будет несущественным. В идеальном случае (при одинаковом старении аккумуляторов) он может оставаться несущественным продолжительное время, однако так бывает не всегда.

В качестве примера рассмотрим случай существенного разброса значений емкости. Представим, что АБ состоит из двух последовательно соединенных аккумуляторов емкостью 50 и 100 А·ч (значения взяты для наглядности, вообще АБ с таким разбросом вполне можно считать вышедшей из строя), и эти аккумуляторы изготовлены из идентичных материалов. Допустим, что они заряжены до одинакового напряжения (рис. 2а). В таком случае, хотя напряжения и одинаковые, очевидной является разность в запасенной энергии, имеющаяся между аккумуляторами.

Рис. 2. Разность емкостей аккумуляторов при одном и том же напряжении

 

Если начать заряжать такую батарею, то ток заряда, текущий через каждый аккумулятор, будет одинаковым. Таким образом, по истечении некоторого времени заряда оба аккумулятора запасут одинаковое количество энергии, однако степень заряженности и, как следствие, напряжение на них изменится по-разному (рис. 2б). Очевидно, что напряжение на аккумуляторе емкостью 50 А·ч будет возрастать быстрее, чем на аккумуляторе емкостью 100 А·ч, и он первым достигнет конечного зарядного напряжения.

Рассмотрим, каким образом будет производиться балансировка АБ, взятой нами в качестве примера, системами различных типов.

 

Пассивная СБ

Пассивная СБ будет пытаться уменьшить ток заряда того аккумулятора, напряжение на котором возрастает быстрее. В общем случае это можно представить как замыкание такого аккумулятора шунтирующим резистором R. Таким образом, через этот аккумулятор будет протекать лишь часть зарядного тока. Оставшаяся же часть тока потечет через шунт R (рис. 3).

Рис. 3. Шунтирование аккумулятора резистором R при заряде

Аккумулятор G1 имеет емкость 50 А·ч, G2 — 100 А·ч. При снижении тока заряда на величину IR скорость заряда аккумулятора G1 уменьшится, следовательно, уменьшится и скорость возрастания напряжения на нем. Таким образом, при достижении конечного зарядного напряжения на аккумуляторе G1 аккумулятор G2, через который все это время протекал полный ток заряда, запасет несколько большее количество энергии, чем при отсутствии системы баланса. Величина этой добавки определяется разностью токов заряда аккумуляторов, умноженной на время заряда, и без фазы падающего тока составит IR×t [2]. Во время разряда батареи пассивная СБ, как правило, никаких действий не производит. Разряд в штатном режиме будет остановлен, когда напряжение на одном из аккумуляторов (в данном случае на аккумуляторе G1) достигнет минимального допустимого значения.

При следующем цикле заряда ситуация несколько изменится, так как в аккумуляторе G2 останется некоторое количество энергии и, следовательно, напряжение на нем будет выше, чем на аккумуляторе G1. Поэтому в начале заряда СБ будет шунтировать резистором аккумулятор G2. Затем, когда напряжение на G1 превысит напряжение на G2, шунтироваться будет уже аккумулятор G1. Естественно, шунтирование аккумулятора G2 в начале заряда выглядит неэффективным, так как получается, что СБ в этот момент работает против себя. На самом деле больших проблем из-за этого не возникает.

Во-первых, в хорошо подобранной батарее разброс по емкости между аккумуляторами несравнимо меньше, чем в рассматриваемом примере, даже после длительной эксплуатации, вследствие чего шунтирование «не того» аккумулятора будет кратковременным. Во-вторых, глядя на рис. 1, можно заметить, что на графике есть пологий участок (5-60%), и при не очень большом разбросе емкостей разница напряжений между аккумуляторами на этом участке может быть сравнима с погрешностью измерения СБ. Следовательно, в этот период никакого шунтирования производиться не будет.

В итоге при правильно работающей пассивной СБ возникает ситуация, когда в конце заряда АБ все аккумуляторы в ней оказываются полностью заряженными, а в конце разряда в аккумуляторах с несколько большей емкостью остается некоторое количество энергии, которое в данном случае не используется. Таким образом, общая емкость АБ из последовательно соединенных аккумуляторов оказывается не больше, чем у аккумулятора с минимальной емкостью.

Обобщая сказанное, можно выделить несколько основных недостатков пассивных СБ. В первую очередь, это невозможность использования всей энергии, которую может запасти батарея. Кроме того, при прохождении тока через шунтирующие резисторы на них происходит рассеивание энергии в виде тепла, что снижает КПД системы «АБ — зарядное устройство». При использовании АБ средней емкости (десятки А·ч), не говоря уже о высокоемких, количество выделяемого тепла будет велико, и разработчикам придется предусмотреть систему теплоотвода, что в некоторых приложениях бывает весьма непросто. Также при использовании пассивной СБ иногда прибегают к преднамеренному увеличению времени заряда путем ограничения зарядного тока. При большом разбалансе это способствует более эффективной работе СБ благодаря увеличению соотношения IR/Ich, однако увеличение времени заряда приводит к снижению эксплуатационных характеристик батареи.

В каких же случаях стоит применять пассивные СБ? Это необходимо делать тогда, когда необходимо скомпенсировать ток саморазряда одинаковых или очень близких по емкости аккумуляторов. Даже одинаковые аккумуляторы одного и того же производителя могут иметь разные токи саморазряда. При хранении АБ разность токов саморазряда приведет к тому, что в разных аккумуляторах останется разное количество энергии, даже при одинаковой емкости последних. Достоинством пассивных СБ является их низкая стоимость, а также компактность и простота. Важно и то, что пассивные СБ мало влияют на удельные характеристики всей АБ (Вт·ч/кг), однако их применение накладывает дополнительные требования по подбору аккумуляторов перед комплектованием и сборкой батареи.

Другими словами, при использовании пассивной СБ все аккумуляторы в АБ должны иметь приблизительно одинаковые емкости и один и тот же химический состав, то есть быть от одного производителя. И даже желательно, чтобы они были выбраны из одной поставочной партии. Такой подход налагает требования к качеству материалов и технологии производства, а значит, непосредственно к качеству аккумулятора. Это будет являться некоторой гарантией одинакового старения (деградации электродных масс, то есть потери емкости с течением времени) всех аккумуляторов в АБ.

 

Активные СБ

Активные СБ способны перераспределять энергию внутри АБ и могут работать как при разряде, так и при заряде. На рис. 4 схематически показан принцип такого перераспределения при разряде.

Рис. 4. Принцип действия активной СБ

Перераспределение энергии происходит от аккумулятора G2, имеющего большую емкость, к аккумулятору G1, имеющему меньшую емкость. Активная СБ берет часть энергии у G2, увеличивая его ток разряда (IG2), и уменьшает ток разряда G1 (IG1). В идеальном случае, если принять КПД активной СБ за 100%, а напряжения на аккумуляторах примерно равными, то входной и выходной ток СБ будут равны (IBout = IBin). При заряде ситуация изменится на противоположную, и активная СБ будет уменьшать ток заряда аккумулятора G1 и увеличивать ток заряда G2, становясь для G1 своего рода шунтом, показанным на рис. 3, но не преобразующим энергию в тепло, а передающим ее аккумулятору G2.

Проведем оценочный расчет (без учета КПД СБ): какие же токи балансировки необходимо иметь, чтобы сбалансировать приведенную в качестве примера батарею в различных режимах разряда. Учтем при этом время разряда, что часто необходимо потребителю для расчета работы АБ.

При одночасовом разряде максимальный ток АБ в нагрузку составит 75 А, ток баланса — 25 А; при 2-часовом режиме ток разряда — 37,5 А, ток баланса — 12,5 А; при 4-часовом режиме ток разряда — 18,75 А, ток баланса — 6,25 А; при 8-часовом режиме ток разряда — 9,375 А, ток баланса — 3,125 А. По расчетам видно, что при 4-…8-часовом режиме разряда даже на АБ с очень большим разбросом по емкости, взятой нами в качестве примера, балансировочные токи остаются небольшими. Но и такие токи перераспределения энергии внутри АБ способны повысить отдаваемую в нагрузку емкость, которая во всех режимах разряда составит 75 А·ч. Эта емкость, естественно, больше, чем при использовании пассивной СБ, так как появляется возможность отдать в нагрузку всю энергию, запасенную в АБ.

Таким образом, даже при значительном падении емкости одной из ячеек внутри АБ (в нашем примере — в два раза) емкость АБ состоящая из двух последовательно соединенных аккумуляторов, упала всего на 25%. Чем больше последовательно соединенных аккумуляторных ячеек в АБ, тем меньшее влияние оказывает снижение емкости (деградация) одной ячейки на емкость всей АБ при использовании активных СБ.

Чем больше ток, который может выдать СБ, и меньше ток нагрузки, тем больший разбаланс емкостей может свести активная СБ. Понятно, что до бесконечности увеличивать балансировочные токи нельзя, иначе АБ превратится в DC/DC-преобразователь и значительно ухудшатся ее удельные характеристики.

Значительным преимуществом активных СБ является намного меньшее выделение тепла при работе по сравнению с пассивными. Поэтому там, где необходим балансировочный ток более 5 А, применяют активные СБ. Благодаря современным достижениям в области создания DC/DC-преобразователей можно изготавливать компактные и высокоэффективные активные СБ со значительным балансировочным током (десятки ампер) при КПД >0,85. Способность активных СБ работать и при разряде освобождает от необходимости растягивать время заряда, для того чтобы сбалансировать АБ, как это делается при использовании пассивных СБ. Потребитель всегда нуждается в АБ, которую можно заряжать как можно быстрее, а затем использовать АБ как можно дольше, получив при этом хорошие удельные характеристики.

К недостаткам активных СБ следует отнести дороговизну по сравнению с пассивными СБ, затраты времени и средств на проектирование и изготовление. А также то, что в подключенном к АБ состоянии активные СБ имеют заметное потребление тока на холостом ходу, поэтому их часто проектируют как управляемые, то есть СБ включают в необходимые моменты времени. Управление должно осуществляться от системы обеспечения функционирования (СОФ, battery management system, BMS), что предполагает наличие алгоритма в самой СОФ для управления СБ.

В настоящее время производители электронных компонентов выпускают широкий спектр решений для реализации различных подходов к построению активных систем баланса Li-ion АБ. Как правило, такие решения представляют собой отдельную интегральную микросхему, для работы которой необходимо несколько внешних элементов (трансформаторы/катушки индуктивности, MOSFET-транзисторы). Функционал управления активным балансированием батареи также может быть интегрирован непосредственно в микросхему контроля. Таким образом, разработчик АБ имеет возможность построить активную систему баланса с учетом всех требований, определяемых назначением и структурой батареи, в том числе ее емкостью, номинальным напряжением, режимами работы и, что немаловажно, стоимостью.

В качестве примера современного решения для реализации активной системы баланса рассмотрим микросхему LTC3300-1 фирмы Linear Technology (рис. 5). Одна такая микросхема способна перераспределять энергию в батарее, содержащей до шести последовательно соединенных Li-ion аккумуляторов. При этом имеется возможность построения системы баланса для высоковольтных батарей (с напряжением до 1000 В) на основе необходимого количества микросхем LTC3300-1, каждая из которых будет обслуживать свою группу аккумуляторов. Применение этой микросхемы возможно как в тандеме с микросхемой контроля Li-ion батареи LTC6803-1 того же производителя, так и с другими устройствами контроля, в том числе и спроектированными самим разработчиком батареи. Это обусловлено наличием цифрового интерфейса управления, аппаратно совместимого с SPI, и простого протокола обмена управляющей и мониторинговой информацией.

Рис. 5. Схема включения микросхемы LTC3300-1

Благодаря возможности использования внешних компонентов с различными характеристиками можно соответствующим образом варьировать характеристики разрабатываемой системы баланса. В частности, применив мощные MOSFET-транзисторы, можно повысить ток баланса до 10 А. Конечно, можно обратить внимание и на малогабаритные или более дешевые внешние компоненты, если для конечного изделия критичны такие параметры, как размеры, тепловыделение или цена.

Отметим, что при разработке микросхемы LTC3300-1 особое внимание уделялось защите от сбоев и нештатных ситуаций. В частности, если микросхема обнаружит нарушение целостности связанных с ней электрических цепей, перенапряжение на каком-либо из аккумуляторов или другую нештатную ситуацию, она незамедлительно прекратит цикл балансирования, если таковой был запущен, во избежание повреждения составных частей батареи. В протоколе информационного обмена также предусмотрена защита от сбоев при передаче путем введения контрольной суммы (CRC) в пакет данных. Поведение микросхемы при обнаружении ошибки в принятых данных четко регламентировано документацией и, следовательно, заранее известно разработчику, что позволяет не терять контроль за поведением системы баланса при отработке нештатных ситуаций такого рода.

Говоря об области применения активных СБ, во-первых, следует упомянуть АБ большой емкости, где даже токи, компенсирующие саморазряд (при ограниченном времени заряда), могут достигать десятков ампер, что неприемлемо много для пассивных СБ. При этом аккумуляторы большой емкости имеют относительно высокую стоимость, и стоимость активной СБ на их фоне незначительна. Во-вторых, активные СБ предпочтительнее, если требуется увеличение надежности АБ и продление ее срока службы, так как, даже имея высокозатратные методики подбора аккумуляторов в АБ и качественные аккумуляторы, не всегда можно предсказать скорость деградации отдельных ячеек в АБ. В конце срока эксплуатации АБ степень деградации отдельных аккумуляторов может быть различной, что можно компенсировать активной СБ.

 

Заключение

Еще раз подчеркнем, что системы баланса АБ могут быть реализованы различными способами. И активные, и пассивные СБ имеют право на существование как различные способы решения поставленной задачи при учете их достоинств и недостатков. Использование того или иного типа СБ в каждом конкретном случае диктуется особенностями самой АБ, предполагаемой сферой ее применения и, конечно же, комплексом предъявляемых к ней требований.

Литература

  1. Рыкованов А. С. Системы баланса Li-on аккумуляторных батарей // Силовая электроника. 2009. № 1.
  2. Рыкованов А. С., Румянцев А. М. Способы заряда Li-ion аккумуляторов и батарей на их основе // Компоненты и технологии. 2012. № 11.

Активная балансировка ячеек батареи | Аналоговые устройства

к Кевин Скотт и Сэм Норк