Электромагнитный соленоид клапан: устройство, виды, назначение и принцип работы

Содержание

какой выбрать? Особенности, отличия, эксплуатационные ограничения

Введение

При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.

В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.

1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов

1.1. Конструкция соленоидных клапанов прямого действия

Устройство наиболее простого соленоидного клапана представлено на рисунке 1.

Рисунок 1 – Конструкция соленоидного клапана прямого действия

Катушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.

Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана — «соленоидный» или «электромагнитный». Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.

Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.

2} times {{A} over {2 times %mu_0},(6)

где:
I – ток, потребляемый катушкой;
N — число витков провода внутри катушки;
µr — магнитная проницаемость сердечника;
µ0 — магнитная постоянная, равная 4π·10-7 Гн/м;
L — длина намотки провода внутри катушки;
A — площадь поперечного сечения сердечника.

Мощность W, потребляемая катушкой из электрической сети, равна:

где:
R – сопротивление катушки.

Выражая квадрат тока из формулы (7) и подставляя его значение в формулу (6), получим:

F=W×(N×μr×μ0)2×A2×L2×μ0×RF= W times(8)

Обозначим совокупность всех коэффициентов, определяемых конструкцией узла клапана «катушка-сердечник» как Kcc

Kcc=(N×μr×μ0)2×A2×L2×μ0×RK_cc= { ( N times %mu_r times %mu_0 )}^2 times A over { 2 times L^2 times %mu_0 times R }(9)

Тогда формула, втягивающего усилия катушки примет следующий вид

F=W×KccF=W times K_cc(10)

Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана «катушка-сердечник» и пропорционально электрической мощности, потребляемой катушкой.

Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:

F1W1=F2W2{F_1} over {W_1} = {F_2} over {W_2}(11)

Выражая из данного равенства W2 получим:

W2=W1F2F1{ {W_2} = W_1 {F_2} over {F_1}(12)

Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:

W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт{ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт(13)

Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.

Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.

1.2 Устройство соленоидных клапанов непрямого действия

Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.

Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембраной

В таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.

В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.

Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.

Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.

До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.

При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана).

Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.

После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.

В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – «всплывает», поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.

Примеры клапанов с плавающей мембраной

Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔPмин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.

Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.

Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.

Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъем

В исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.

Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.

Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).

В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.

Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.

Примеры клапанов с плавающей мембраной

Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом.

Однако, все они имеют следующие общие особенности:

  • рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
  • внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
  • большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.

1.3. Факторы, ограничивающие использование соленоидных клапанов

1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника

Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.

Рисунок 4 – Заклинивание сердечника клапана вследствие загрязнения

Также прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.

В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды.

Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.

Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей среды

Для защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.

1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана

Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.

Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.

1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала

Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.

При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.

Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего «передавит» пружину и откроет клапан (см. рисунок 7).

Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапан

Определить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).

Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи среды

Однако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.

Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).

Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкости

Время открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1. ..2 с. Однако, за это время через клапан может пройти несколько литров жидкости.

Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.

1.4. Ключевые особенности эксплуатации соленоидных клапанов

  • Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
  • Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
  • Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.

Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.

2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом

2.1. Устройство угловых седельных клапанов с пневмоприводом

Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.

Рисунок 10 – Конструкция седельного клапана с пневмоприводом

Внутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.

Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.

Рисунок 11 – Клапан с пневмоприводом в открытом состоянии

Для закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.

Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.

Примеры угловых клапанов с пневмоприводом

2.2. Схема управления клапанами с пневмоприводом

Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.

Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.

Рисунок 12 – Пневматическая схема распределителя 3/2

Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.

До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.

При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.

На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.

Рисунок 13 – Распределительные клапаны 3/2 различных конструкций

У клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.

На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.

Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводом

Электрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).

Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).

Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управления

Каждый из этих способов монтажа имеет свои преимущества и недостатки.

Установка распределителей на клапанах с пневмоприводом

Преимущества

  1. +  Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
  2. +  Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).

Недостатки

  1.   Необходимость прокладки двух линий до клапана: пневматической и электрической.
  2.   Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.

Установка распределителей в шкафу управления

Преимущества

  1. +  Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
  2. +  Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
  3. +  Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).

Недостатки

  1.   Больше время срабатывания клапанов с пневмоприводом.
  2.   Повышенный расход воздуха.

3. Сравнение клапанов с пневмоприводом с соленоидными клапанами

Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:

  • приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
  • не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
  • менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.

Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.

Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.

Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.

Таблица 1 – Сравнение коэффициента расхода Kv клапанов разных конструкций
Тип клапанаЭлектромагнитный клапанКлапан с пневмоприводом
Схема движения потока жидкости
Размер клапанаКоэффициент расхода Kv, л/мин
DN 156570 (+ 8%)
DN 20110150 (+ 36%)
DN 25180308 (+ 71%)
DN 32250608 (+ 143%)
DN 40390700 (+ 79%)
DN 50575910 (+ 58%)

В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют «вход под диском», на изображении справа – «вход над диском».

Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводом

Очевидно, что при подаче рабочей среды «над диском», её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.

Пример изменения рабочего давления при подаче среды над и под диском

На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.

Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-U

Рабочее давление пневмоклапана при подаче среды «под диском» составляет 6 бар, при подаче среды «над диском» – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды «над диском». Данная зависимость показана на рисуноке 19.

Рисунок 19 – График зависимости давлений рабочей и управляющей среды

По графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе «над диском») до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.

Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.

Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.

Заключение

В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.

Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.

Электромагнитные клапаны

  • +  Подключаются напрямую к электрической системе управления
  • +  Не требуют подвода сжатого воздуха
  • +  Системы на основе данных клапанов, как правило, проще и дешевле
  •   Имеют особые требования к чистоте рабочей среды
  •   Однонаправленные

Клапаны с пневмоприводом

  • +  Устойчивы к загрязнениям рабочей среды
  • +  Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
  • +  Как правило, двунаправленные
  •   Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
  •   Для работы требуют подключение сжатого воздуха

Инженер ООО «КИП-Сервис»
Быков А. Ю.

Читайте также:

Соленоидный клапан принцип работы

Устройство клапана

Соленоидный клапан по составу основных деталей и узлов во многом совпадает с обычным устройством с ручным управлением:

  • Корпус с подводящим и отводящим патрубком.
  • Рабочая камера с седлом.
  • Тарельчатый, шаровой или лепестковый запорный элемент.
  • Возвратная пружина.
  • Шток, соединенный с запорным элементом и сердечником соленоида
  • Соленоид.

Корпус магнитного клапана изготавливается из металлических немагнитных сплавов или прочных пластиков.

Высокая герметичность корпуса позволяет применять клапан в различных средах, в том числе и активных.

Соленоидные клапана для воды в качестве уплотняющих прокладок используют резину, для более активных сред выбирают фторопласт.

Открывать и закрывать клапан соленоид за время службы должен тысячи или даже десятки тысяч раз, поэтому для обмоток берут самые высококачественные медные провода, покрытые изолирующей эмалью.

Область использования

  • Бытовые системы отопления.
  • Системы водоснабжения и водоподготовки.
  • Технологические установки.
  • Трубопроводный транспорт.
  • Генерация и распределение тепла.
  • Бытовые приборы.
  • Канализация.
  • Орошение.
  • Транспортные средства.

Клапан соленоидный — принцип работы

Соленоидный клапан представляет собой маленькую конструкцию, которая действует за счет электромагнитных напряжений.

У простых запорных арматур устройство совсем легкое, и состоит оно из небольшого элемента, который перекрывает поток.

Такой составляющей может быть шар с пробоиной либо диск.

Но для закрытия трубопровода следует повернуть дополнительную ручку на кране, тогда как соленоидные установки требуется лишь подключить к электричеству, а все остальное они произведут самостоятельно.

Во внутренней части механизма имеется катушка, которая реагирует на электромагнитные толчки.

При действии на нее электромагнитного поля она дает напряжение на маленький плунжер.

Запорная часть вжимается поршнем или простым устройством из нескольких пружинок, как пластиковая труба.

Процесс определенной работы зависит от того, какой клапан соленоидный будет вмонтирован.

В одном оборудовании при подаче электричества закрепляющий диск приподнимается, а в другом, совсем наоборот, опускается для полного перекрытия потока.

Принцип работы

Этот прибор нуждается в минимальном приложении человеческих усилий.

Просто достаточно подать короткий электрический толчок, чтобы клапан соленоидный электромагнитный начал свою работу.

По этой причине аналогичное устройство применяется в непростых системах трубопроводов. 

Преимущества клапанов

  • практичность;
  • функциональность;
  • возможность точно следить за всеми процессами и настраивать порядок системы;
  • надежность;
  • отсутствие трудностей с установкой;
  • сравнительная легкость конструкции.

Недостатки

  • требуется подключение прибора к электричеству;
  • стоимость такой установки порядком выше средней цены простой запорной арматуры;
  • при неверном использовании деталь способна поломаться.

Характеристики

Электромагнитные клапаны выпускают в разных вариантах.

Каждая дополнительная разновидность определена для осуществления тех или иных целей.

По качествам работы их разделяют на несколько видов.

  1. Нормально закрытый соленоидный клапан. В неподвижном положении он перекрыт. Это означает, что откроется он лишь в том случае, если подадут на катушку электрический импульс.
  2. Нормально открытый. Такой прибор, наоборот, все время находится в открытом состоянии. А сам поток перекрывается только после звонка.
  3. Регулируемый на квадратные трубы. Такую разновидность установок можно индивидуально настраивать из одной позиции в другую, что очень выгодно.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Для чего нужен электромагнитный (соленоидный) клапан

Электромагнитный клапан способствует дистанционному перекрытию или открытию подачи газа или жидкости в трубопроводной системе за счёт передачи на него электрического напряжения, которое подаётся на индукционную катушку. Катушка принимает на себя электрическое напряжение и приводит соленоидный клапан и всю систему в работу. Электромагнитная катушка индуктивности работает во всех известных напряжениях переменного и постоянного тока (220В АС, 24 AC, 24 DC, 5 DC и др.). Соленоидные клапаны характеризуются быстродействием по сравнению с другими видами трубопроводной запорной арматуры.

Применение соленоидных клапанов

Клапан (соленоид) состоит из электрических магнитов, которые называются соленоидами, поэтому и называют клапаны электромагнитными или соленоидными.

Соленоидный клапан предназначен для перекрытия потоков рабочих сред (холодной и перегретой воды, сжатого воздуха и технических газов, антифризов на основе этиленгликоля и пропилен гликоля, других жидкостей и газов). Популярность применения клапанов возрастает благодаря возможности автоматизировать контроль перемещения носителей по трубопроводам. Способен работать в различных диапазонах давления и температуры. Используется для выполнения широкого спектра функций управления, регулирования и дозирования в системах водоснабжения, водоподготовки, пожаротушения, технологических процессах в промышленности и сельском хозяйстве.

Устройство электромагнитного (соленоидного) клапана

Основные элементы:

Общее описание:

Крышки и корпуса обычно изготавливают из латуни, чугуна, нержавеющей стали или специальных полимеров. Для штоков и плунжеров применяют специальные магнитные материалы. Обмотка катушек изготавливается из электротехнической меди. Для подключения к электросети используется штекер. Присоединение к трубопроводной системе осуществляется резьбовым или фланцевым способом. Управление осуществляется подачей напряжения на катушку. Под действием электрического напряжения соленоидный клапан открывается благодаря магнитному полю, которое создаётся внутри устройства, и втягивает плунжер в катушку. Мембраны (диафрагмы) изготавливаются из прочных эластичных полимеров.

ВИДЫ МЕМБРАН

Мембраны для клапанов электромагнитных различаются по составу и техническим характеристикам.

EPDM – Этилен-пропилен-диен-каучук. Химически и механически стойкий эластичный сополимер этилена и пропилена. Устойчив к кислотам, щелочам, окислителям, растворам солей, горячей и холодной воде, пару низкого давления (до 2 бар), воздуху и нейтральным газам. Разрушается при контакте с углеводородами (бензином, дизельным топливом), маслами, ароматическими спиртами (бензолом). Температура эксплуатации -20…+130?С.

NBR – Нитрил-бутадиен-каучук. Эластичный полимер. Нейтральный к воздействию бензина, минерального масла, дизельного топлива, растворов щелочей, неорганических кислот, пропана, бутана и воды. Разрушается бензолом, окислителями и ультрафиолетом. Температура эксплуатации -10…+90 ?С. Длительная эксплуатация при температурах выше 90 ?С приводит к потере эластичных свойств и старению материала.

FKM – Фтор-каучук. Эластичный сополимер. Высокая устойчивость к старению, озону, ультрафиолету. Нейтрален к щелочным средам, нефтепродуктам, дизтопливу и бензину, спирту, воде, воздуху, пару низкого давления (до 2 бар). Разрушается эфирами и органическими кислотами.

VMQ – Кремний-органический эластомер. Высокая устойчивость к горячему воздуху, озону, ультрафиолету, минеральным маслам. Область использования: медицинская промышленность и пищевые производства (вода, спирты, растворы). Характеризуется стойкостью к истиранию и низкой адгезией.

PTFE – Поли-тетра-фтор-этилен. Данный фторполимер является одним из самых химически стойких полимерных материалов. Используется для кислот и щелочей высокой концентрации, растворителей, бензола, окислителей, масел, топлива, агрессивных газов, горячей воды, перегретого пара. Разрушается трифторидом хлора и жидкими щелочными металлами.

TEFLON – PTFE с наполнителем из углеродистых волокон и минеральной смолы. Характеризуется более высокой температурой эксплуатации и механическими характеристиками по сравнению с PTFE.

VITON – эластомер на основе фторкаучука. Совместим с минеральными маслами, жирами, эфирами, сырой нефтью. Рабочая температура -20…+130?С.

ВИДЫ ИНДУКЦИОННЫХ КАТУШЕК

переменного тока – клапан имеет большую силу электромагнитного поля. Используется для регулировки потока высокого давления. При потреблении большого количества электроэнергии увеличивается скорость закрытия клапана, что обеспечивает более мощный поток;

постоянного тока – клапан имеет небольшую силу действия электромагнитного поля. Соответственно используется для регулировки потока низкого давления.

ВИДЫ ЭЛЕКТРОМАГНИТНЫХ КЛАПАНОВ

прямого действия – используется при небольшом расходе; срабатывает под воздействием усилия, возникающего при подключении к электросети;

пилотного (непрямого) действия – используется преимущественно при больших расходах; срабатывает под воздействием энергии потока воды, управление которым осуществляется при помощи электрического напряжения. Для нормальной работы соленоида необходим минимальный перепад давления (0,2 атм.).

нормально закрытые (НЗ) – при отсутствии электроэнергии находятся в закрытом состоянии, при подаче электроэнергии открываются;

нормально открытые (НО) – при отсутствии электроэнергии находятся в открытом состоянии, при подаче электроэнергии закрываются;

бистабильные (импульсные) (БС) — переключаются с открытого на закрытое положение под действием управляющего импульса.

Самым востребованным является 2/2-позиционный латунный электромагнитный клапан для воды, исполнения «НЗ» ? нормально-закрытый, с пилотным каналом, а также клапан прямого действия.

В ассортименте компании Термосклад представлены клапаны латунные электромагнитные нормально закрытые Emmeti (производство Италия) для воды и электромагнитные (соленоидные) нормально-закрытые пилотного (непрямого) действия производства Ningbo Kailing Pneumatic CO. ,LTD, которые предназначены для перекрытия потоков рабочих сред (холодной и перегретой воды, сжатого воздуха и технических газов, антифризов на основе этиленгликоля и пропилен гликоля, других жидкостей и газов) https://termosklad.ru/category/elektromagnitnye-klapany/ . Клапаны имеют отличные показатели надёжности, но стоит подчеркнуть, что надёжность полностью зависит от правильного монтажа и эксплуатации.

Таблица устранения неисправностей:

Надежность в деталях: как выбрать соленоидные клапаны

Надежность

Общая надежность любой системы на производственном предприятии не может превышать надежность последнего звена в цепочке управления. Во многих случаях таким звеном является соленоидный клапан с дистанционным управлением, который запускает или останавливает производственный процесс.

По сути, соленоидный клапан — это устройство для электрического прерывания или отвода потока рабочей среды в трубе. Существует множество типов соленоидных клапанов, однако все они основаны на одном принципе: отверстие закрывается или открывается для того, чтобы регулировать поток. Области применения таких клапанов разнообразны. С одной стороны, их можно использовать для управления стандартными отсечными и регулирующими клапанами или же специальными клапанами — например, клапанами систем повышенной надежности для защиты от превышения давления (High Integrity Pressure Protection System, HIPPS) и клапанами аварийного отключения (Emergency Shutdown, ESD). С другой, они подходят и для непосредственного управления рабочими средами при контроле пожаротушения или управления системами обеспечения паром, водой и воздухом. Соленоидные клапаны также широко используются в пневматических системах и элементах управления. Во всех этих случаях надежность работы оборудования имеет первостепенное значение.

Для сокращения издержек некоторые предприятия приобретают соленоидные клапаны, основываясь только на их цене. Однако ошибочно полагать, что все клапаны одинаковы и мало что может пойти не так с этими, казалось бы, простыми устройствами, которые обычно состоят из катушки, плунжера и седла. Разработанный на высоком техническом уровне соленоидный клапан может стоить дороже, но расходы в течение срока его службы будут значительно ниже, чем у более дешевых эквивалентных клапанов.

Для подтверждения этого тезиса о ложной экономии рассмотрим традиционный соленоидный клапан. Чтобы уплотнить шток для предотвращения утечки, в них обычно используются специальные кольца. Такая конструкция имеет множество недостатков. Герметизирующая способность уплотнительного кольца со временем снижается из-за износа резины, что приводит к утечкам рабочей среды. Из-за этого рабочая среда или присутствующие в ней загрязнения могут накапливаться на штоке клапана, увеличивая трение. Кроме того, в некоторых конструкциях требуется вентиляционное отверстие, чтобы обеспечить плавное движение штока клапана. Однако из-за такого отверстия внутренние части клапана становятся уязвимыми к загрязнениям из атмосферы, которые также могут откладываться на штоке.

Все эти факторы могут привести к замедлению срабатывания и потенциальным сбоям клапана, а, например, в HIPPS и системах аварийного отключения важна каждая доля секунды. Чтобы справиться с повышенным трением, некоторые поставщики используют более упругую пружину, которая позволит клапану по-прежнему работать при увеличении трения. Для преодоления такой упругости пружины требуется большее значение FFR (Force Friction Ratio — соотношение силы и трения). Соответственно, необходим соленоид большей мощности, а при увеличении мощности выделяется больше тепла. Повышение температуры, в свою очередь, может отрицательно сказаться на сроке службы соленоида. Помимо этого, катушка с повышенным энергопотреблением может повысить расходы на установку клапана, поскольку могут потребоваться провода большего сечения или инженеры будут вынуждены использовать меньше клапанов в одном контуре управления.

Отказы соленоидных клапанов приводят к простоям оборудования со всеми сопутствующими проблемами и затратами. А если клапан заклинит в ситуации, когда требуется аварийное отключение, то результат может быть фатальным.

Надежность можно определять по-разному, однако в инженерной терминологии она характеризует степень доверия к оборудованию, т. е. способность системы или компонента работать в заявленных условиях в течение указанного периода без неполадок и отказов. Надежность, безусловно, тесно связана с безопасностью системы: для анализа обоих показателей применяются общие методы и они зависят друг от друга. Кроме того, данный параметр оказывает влияние на стоимость сбоев, которая состоит из стоимости простоя системы, запасных частей, оборудования для ремонта, труда персонала и затрат на претензии по гарантиям.

 

Рис. 1. Предполагаемый срок службы катушки

Особенности катушки

Одной из важнейших частей соленоидного клапана является электромагнитная катушка, которая существенно влияет на его надежность. Задача катушки — создавать электромагнитное поле, которое будет поднимать сердечник/шток, чтобы открыть нормально закрытый клапан (НЗ) или закрыть нормально открытый (НО). Без нее внутренние компоненты клапана просто не смогут перемещаться при подаче напряжения.

Некоторые поставщики соленоидных клапанов приобретают катушки у сторонних производителей, зачастую не имеющих собственного интереса в их оптимизации. Им предоставляется чертеж и технические характеристики, и они поставляют продукт, отвечающий этим требованиям. В свою очередь, собственное производство катушек позволяет отслеживать каждый аспект производственного процесса, совершенствовать его и внедрять новые технологии, а не просто разрабатывать конструкцию, которая будет использоваться без изменений в течение длительного времени.

Для изготовления надежной электромагнитной катушки производитель должен соблюдать стандарты IEC 335 для электрических устройств. Также нужно установить класс изоляции: у стандартных катушек это E, F или H. Класс изоляции определяет максимальную рабочую температуру катушки в течение конкретного срока службы (рис. 1). Например, в соответствии с европейским стандартом IEC 335 катушки класса H должны выдерживать 20 000 ч при +180 °C, а катушки класса F — 20 000 ч при +155 °C. Однако по требованиям американского стандарта UL катушки должны выдерживать 30 000 ч как в классе H (при +180 °C), так и в классе F (при +155 °C). Оптимизированный соленоидный клапан будет содержать проводник из меди высокой чистоты, отвечающей более строгим международным стандартам, а также изолирующее покрытие класса H по UL, которое обеспечит длительный срок службы.

При производстве катушки одной из важных целей является «идеальная обмотка»: чтобы витки катушки были абсолютно однородны и каждый последующий слой идеально ложился на предыдущий (рис. 2). Такая обмотка приближается к 100%-ной эффективности, а также уменьшает риск возникновения горячих участков, которые являются потенциальными точками отказа.

Рис. 2. «Идеальная обмотка»

После намотки проводника катушку следует заключить в оболочку, чтобы обеспечить изоляцию и защиту от повреждения и влаги. Эпоксидная литая оболочка имеет лучшие характеристики, поскольку является прекрасным изолятором и негигроскопична. В конечном счете, каждая катушка, предназначенная для использования в соленоидном клапане, должна быть спроектирована и испытана для непрерывной службы, а также отвечать требованиям стандарта IEC 216 к термостойкости.

 

Оптимальная конструкция

Как уже отмечалось выше, традиционные конструкции клапана, в которых используются уплотнительные кольца и вентиляционные отверстия, не соответствуют требованиям безопасности и надежности.

Необходим иной подход к разработке соленоидного клапана — без уплотнения, с низким коэффициентом трения и без заедания. Для этого между штоком и корпусом клапана можно использовать специальное двухслойное динамическое уплотнение, не содержащее никаких резиновых компонентов, которые, как уже говорилось, со временем разрушаются. Внутренний слой уплотнения (U-образное кольцо), находящийся в соприкосновении со штоком клапана, может быть изготовлен из PTFE и поддерживаться уплотнительным кольцом из эластомера. Для таких колец используется эластомер, устойчивый к воздействию окружающей среды. Он создает преднагрузку для U-образного кольца из PTFE и обеспечивает статическое уплотнение. В сочетании со штоком клапана, поверхность которого отполирована с точностью до микрона, такая конструкция эффективно предотвращает любое заедание и сводит к минимуму трение штока.

Риск заедания также снижается за счет устранения необходимости в вентиляционных отверстиях. Клапан с «недышащей» конструкцией не допускает проникновения грязи из окружающей среды.

Представленная конструкция имеет низкое значение FFR, что позволяет избежать потребности в мощной пружине и использовать катушку с пониженным энергопотреблением (1,8 Вт, 0,5 Вт IS). У такого решения множество преимуществ. Например, при модернизации завода можно устанавливать новые соленоидные клапаны без замены кабелей или добавления источников питания. Катушка с пониженным энергопотреблением позволяет выполнять больше работы в той же инфраструктуре — например, питать большее количество устройств. Дополнительным преимуществом является то, что меньшая мощность означает меньшую температуру: это приводит к более длительному сроку службы катушки с сокращением эксплуатационных расходов.

Кроме того, качественные клапаны поставляются с соответствующими целевому назначению руководствами по установке и обслуживанию. Эти документы также содержат рекомендации по достижению «чистой» среды и обеспечению максимальной защиты с помощью фильтров и выхлопных устройств, которые позволят избежать попадания в клапан любых загрязнений, способных нарушить его нормальную работу и/или снизить долговечность.

 

Экстремальные рабочие условия

Надежность соленоидных клапанов становится еще важнее в экстремальных рабочих условиях. Например, рассмотрим управление приводом клапана при очень низкой температуре.

Существует множество документальных свидетельств того, что уровень надежности соленоидных клапанов уменьшается по мере понижения температуры. Решение такой проблемы — сертифицированные соленоидные клапаны, работающие при температурах –60…+90 °C.

При работе в коррозионных средах, например содержащих сернистый газ, где часто происходит сульфидное растрескивание под напряжением, все материалы внутренних и внешних компонентов клапана должны отвечать требованиям NACE.

В целом, для любых экстремальных рабочих условий рекомендуется подбирать соленоидные клапаны, защищенные от коррозии и имеющие долгий срок службы, а также сертифицированные признанными в отрасли органами, такими как Exida и TÜV.

Наконец, для потенциально взрыво­опасных сред инженерам следует остановить свой выбор на соленоидных клапанах с широким ассортиментом вариантов взрывозащиты и сертификацией, делающей их пригодными для использования в опасных средах, — ТР ТС 012/2011, ATEX, IECEx, NEMA/UL/CSA, NEPSI, PESO, INMETRO и KOSHA.

 

Решение Emerson

Клапаны ASCO серии 327 от компании Emerson (рис. 3, табл.) — это универсальные соленоидные клапаны 3/2 прямого действия (со сбалансированной тарелкой), доступные в различных исполнениях по материалам, мощности, пропускной способности и сертификации. Они подходят для различных задач, например для управления приводом, разгрузки компрессора и контроля над средствами обеспечения, и могут использоваться в составе широкого диапазона инженерных решений, среди которых системы управления приводом, системы управления с резервированием и байпасные панели.

Рис. 3. Соленоидные клапаны ASCO серии 327

Благодаря уникальной конструкции и заверенному сертификатами соответствию требованиям безопасности, клапаны серии 327 являются проверенным, безопасным, надежным и адаптируемым решением, подходящим для использования в жестких промышленных условиях. Такой клапан обладает взрывозащитой и превосходит строгие требования нефтегазовой отрасли.

Таблица. Технические характеристики клапанов ASCO серии 327

Материал корпуса клапана

Нержавеющая сталь 316L / латунь / алюминий

Размер

1/4″, 1/2″

Пропускная способность (Kv)

До 1,5 м3

Давление

ΔP 0–10 бар

Рабочая температура

–60…+120 °С

Класс SIL

До 3 (Exida и TÜV)

Энергопотребление

от 0,5 Вт

Материал корпуса / оболочки /  катушки

Алюминий / нержавеющая сталь 316L / заливка эпоксидной смолой

Дополнительные возможности

Ручное управление, ручной сброс, съемное ручное управляющее устройство

Международная сертификация Ex

CU TR (ТР ТС), ATEX, IECEx, NEMA/ UL/CSA, NEPSI, PESO, INMETRO, KOSHA и т. д.

Сертификаты безопасности

Exida, TÜV

Клапаны обладают прочной «недышащей» конструкцией, специальным устройством уплотнения и катушкой с увеличенным сроком службы. Все катушки проектируются и изготавливаются на собственных заводах Emerson.

Также клапаны серии 327 позволяют значительно сократить время технического обслуживания и расходы на ввод в эксплуатацию. Например, устройство для управления клапаном при недостаточном давлении можно извлечь вручную, без демонтажа клапана или выключения пневматической системы оборудования.

К другим преимуществам данных клапанов относятся:

  • модели с пониженным энергопотреблением, которые уменьшают размеры источников питания и кабелей;
  • отвечающие требованиям NACE материалы, снижающие риск коррозии;
  • катушки класса H с эпоксидной оболочкой для долгого срока службы;
  • внутренняя устойчивость к вибрациям;
  • наличие постоянного воздушного зазора (даже при подаче питания), который снижает любые риски заедания (рис. 4), вызванные остаточным магнетизмом.

    Рис. 4. Конструкция для снижения риска заедания

 

Пример применения

Чтобы подчеркнуть преимущества высококачественных соленоидных клапанов, рассмотрим управление клапаном ESD на нефтеперерабатывающем заводе. При нормальной работе на такие клапаны подается питание для поддержки технологического клапана в открытом состоянии. Соответственно, в случае аварийной ситуации соленоидный клапан должен быть обесточен и быстро закрыться, чтобы перекрыть технологический клапан. Поскольку соленоид такого типа обычно подолгу работает в режиме ожидания, разрушение уплотнительного кольца и повышенное трение значительно замедлят его отклик при закрытии.

Чтобы измерить время отклика соленоидного клапана после работы в режиме ожидания, было проведено испытание. Оно показало, что клапан ASCO 327 срабатывал значительно быстрее, чем изделие конкурента, которое, помимо прочего, имело большее усилие возврата пружины. Таким образом, клапаны ASCO демонстрируют более стабильное и надежное поведение по прошествии долгого времени, чем аналогичные устройства (рис. 5).

Рис. 5. Быстро закрывающийся соленоидный клапан повышает безопасность применения

 

Заключение

Покупка недорогого соленоидного клапана на первый взгляд может показаться выгодной. Для многих инженеров клапаны — это простые устройства для прерывания или отвода потока в трубе. Однако если необходимо быть уверенным в том, что соленоидный клапан мгновенно откроется или закроется, когда это потребуется, даже после длительного периода ожидания, единственным вариантом являются высококачественные инженерные решения.

Facebook

Twitter

Вконтакте

Google+

Что такое соленоидный клапан и как он работает?

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

ОБЩЕЕ

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования.Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

СТРОИТЕЛЬСТВО

Электромагнитные клапаны — это блоки управления, которые при подаче электроэнергии или обесточивании либо перекрывают, либо пропускают поток жидкости. Привод имеет форму электромагнита. При подаче энергии создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

РАБОТА КЛАПАНА

По способу срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная особенность — это количество портов или количество потоков («путей»).

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

У электромагнитного клапана прямого действия уплотнение седла прикреплено к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис.1). В обесточенном состоянии пружина с сердечником при помощи давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток. При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

Рисунок 1

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 3-ХОДОВЫЕ

Трехходовые клапаны имеют три штуцера и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный. Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут быть выполнены в зависимости от того, как текучая среда соединена с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости.Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет от P к A.

фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предохраняет текучую среду от контакта с камерой змеевика. Клапаны с поворотным якорем могут использоваться для любого трехходового клапана.Основной принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

фигура 3

ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше. Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

КЛАПАНЫ 2-ХОДОВЫЕ С ВНУТРЕННИМ ПИЛОТОМ

Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис. 4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы.Когда пилотный клапан открывается, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия. Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

фигура 4

МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ НАПРАВЛЕНИЕМ

4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия.Эти клапаны имеют четыре патрубка: впускной патрубок P, два патрубка A и B цилиндра и одно патрубок выпускного патрубка R. На рис. 6 показан 4/2-ходовой тарельчатый клапан с внутренним управлением. пилотный клапан открывается при соединении входа давления с пилотным каналом. Обе тарелки главного клапана находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

цифра 5

КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой угловой клапан с закрывающей пружиной. В негерметичном состоянии, седло клапана закрываются. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда на соленоидный клапан подается питание, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина находится на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

рисунок 6

МАТЕРИАЛЫ

Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

МАТЕРИАЛЫ КУЗОВА

Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

Все части электромагнитного привода, которые контактируют с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

МАТЕРИАЛЫ УПЛОТНЕНИЯ

Конкретные механические, термические и химические условия в области применения влияют на выбор материала уплотнения.Стандартный материал для нейтральных жидкостей при температурах до 194 ° F — обычно FKM. Для более высоких температур используются EPDM и PTFE. Материал ПТФЭ универсален практически для всех технических жидкостей.

НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

Все значения давления, приведенные в этом разделе, представляют собой избыточное давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры относятся к диапазону пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

ЗНАЧЕНИЯ РАСХОДА

Расход через клапан определяется конструктивным исполнением и типом потока.Размер клапана, требуемый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды при температуре от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

СОЛЕНОИДНЫЙ ПРИВОД

Общей чертой всех соленоидных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что большая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

КАТУШКИ

Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через полупроводниковую схему.

рисунок 7 Доступная магнитная сила увеличивается по мере уменьшения воздушного зазора между сердечником и гайкой заглушки, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики зависимости хода от силы, показанные на рис. 8, иллюстрируют эту зависимость.

Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается, что приводит к увеличению потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применяется к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, т. Е. Когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокие давления могут быть получены только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

ТЕПЛОВЫЕ ЭФФЕКТЫ

Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

Небольшие объемы и относительно высокие магнитные силы, связанные с соленоидными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время отклика определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

ПО ПЕРИОДУ

Период включения определяется как время между включением и выключением тока соленоида.

ПЕРИОД ЦИКЛА

Суммарное время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

РАБОТА КЛАПАНА

Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

ВЯЗКОСТЬ

Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

ДИАПАЗОН ТЕМПЕРАТУР

Температурные пределы для текучей среды всегда подробно описаны. Различные факторы, например Однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Следовательно, приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

Электромагнитный клапан по лучшей цене на 20 — Выгодные предложения на соленоидный клапан на 20 от Global соленоидный клапан для 20 продавцов

Отличные новости !!! Вы попали в нужное место для электромагнитного клапана на 20. К настоящему времени вы уже знаете, что, что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний соленоидный клапан для 20 скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свой соленоидный клапан за 20 на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в соленоидном клапане на 20 и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг, и предыдущие клиенты часто оставляют комментарии, описывающие свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести solenoid valve for 20 по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Электромагнитные клапаны

: Серия 63 | Брей

Около Связаться с нами Карьера Сделать запрос Продукты Продукция