Какая арматура лучше: Какую арматуру выбрать для фундамента

Содержание

Экспертное сравнение стеклопластиковой и металлической арматуры

Перед тем как приступать к сравнению данных материалов следует понимать, что стеклопластиковая (или же композитная арматура) представляет собой нити из стекловолокна, которые между собой соединены эпоксидкой, она же эпоксидная смола. Подобный стержень покрыт полимерами, а насечками – ребрами является обсыпка из кварца. Благодаря этому стеклопластиковая арматура отличается в лучшую сторону от металлической.

Основные особенности стеклопластиковой арматуры:

Принимая во внимание огромный ассортимент и колоссальное разнообразие продукции, не будем заострять внимание на цифрах. Данные, которые здесь приведены усредненные, составленные на основе анализа разных типов арматуры, что представляется наиболее объективным.

Прочность.

Когда просматриваешь данные приведенные изготовителями, видишь, что прочность композитного прутка приблизительно в четыре раза больше. Однако большая часть внимания уделяется понятию «растяжение». Так как ясно, что пластик в любом случае эластичнее, чем металл, возникает вопрос, а насколько он хорошо реагирует на сжатие, изгиб? А ведь данные показатели не менее важны, ведь от них зависит долговечность и прочность любой конструкции из бетона.

Так как стеклопластик не относится к анизотропным материалам, то «поведение» материала практически целиком зависит от того, куда направлен вектор приложенной силы – нагрузка. Но как же он будет реагировать при чрезмерном сжатии или боковом воздействии? Очень многие специалисты задаются этим и другими вопросами, однако не получают ответа на них от производителей.

Надежность конструкции.

Ее обеспечивают не только показатели самого материала, но и их качественная сцепка. Здесь металл выигрывает у пластика. Ведь специалистам давно известно, что при наличии дефектов бетон со стекловолокном практически разваливается на куски или дает очень большие трещины.

Экономичность использования композита.

Стекловолокно гораздо экономичнее металла. Это видно если обратиться к некоторым факторам:

  1. удобство транспортировки – композитные материалы можно перевозить на легковом автомобиле, в то время как металлические прутки только на грузовой. Тут все конечно зависит от длинны прутков и их количества, но при стандартной длине и небольшой закупке спокойно можно использовать «Газель» вместо грузовика.
  2. снижение затрат на транспортировку, легковая машина дешевле, чем использование грузовой.
  3. сама стоимость каждого композитного прутка ниже, чем металлического приблизительно в два раза.

Также в качестве одного из «плюсов» производители указывают, что композитное волокно можно использовать с меньшим сечением, чем металлическое. Однако все указанные преимущества лишь подчеркивают, что стекловолокно прочно на разрыв, что делает это преимущество несколько сомнительным.

Бесспорные «плюсы» не требующие каких-либо дополнений:

  • стекловолокно очень устойчиво к коррозии;
  • совершенно не проводит электрический ток.

Из вышесказанного следует, что композитное волокно лучше всего подойдет для использования там, где нужны диэлектрики, ценится небольшой вес, хорошая гибкость, инертность к большей части химических агрессивных соединений, требуется производить работы с радиоэлектронными устройствами (не прерывает электромагнитные волны в отличие от металлических прутков).

Основные и самые важные недостатки стекловолокна

Так как композитное волокно появилось не так давно, еще не до конца разработана нормативная база для этого материала, что приводит к разногласиям и проблемам при ее использовании, отсутствуют правила регламентирующие монтаж, какие-либо методики. Есть рекомендации от производителей, но так как у каждого они свои, не совсем понятно, являются ли они правильными и объективными.

Существенно различается и технология изготовления стекловолокна, что приводит к разнице в использовании и тому, что все нормативно-правовые документы строятся на результатах экспериментов проводимых производителями, что также не является объективным и универсальным, подходящим для продукции, изготовленной другим производителем. По этой причине, если что-то все-таки пойдет не так, отстоять этот вопрос в судебных инстанциях будет весьма сложно.

Единственное, в чем сходятся все производители композитных материалов, — их не стоит использовать в балках, перекрытиях, плитах перекрытия, так как данные конструкции требуют высокой прочности на изгиб.

Также стекловолокно менее устойчиво к влиянию высоких температур, чем металлические пруты, что сильно снижает количество областей применения. Еще одним существенным минусом является сложность монтажа, так как нет возможности при соединении прутов использовать сварку.

Из всего выше перечисленного следует, что композитную арматуру можно спокойно применять в тех элементах, где в качестве покрытия основы используется штукатурный состав, делается армирующий каркас.

Для того чтобы точно знать, как правильно произвести монтаж того или иного вида композитного материала, следует в обязательном порядке обратиться к независимому специалисту. Это необходимо, чтобы тот оценил и подобрал подходящий бетон для приготовления раствора, для наиболее безопасного и удобного использования, учитывая смещения почвы, скачки температуры и многое другое.

Итоги сравнения металлической и стеклопластиковой арматуры

Использовать в строительстве жилых зданий композитную арматуру можно лишь в виде дополнительного каркаса или не менее важных, но не являющихся несущими конструкциями. Целиком и полностью заменить каркас из металла она не сможет. Исходя из ее особенностей, безопаснее и целесообразнее стекловолокно использовать при строительстве нежилых объектов и вспомогательных построек.

Более конкретную информацию о характеристиках и использовании стекловолокна можно прочитать в СНиП от 2003 года за № 52-01. Там указаны общие правила ее использования.

Сравнение композитной арматуры и металлической

Для укрепления бетона используется арматура разных видов. Какая из них лучше? Что выбрать: стеклопластиковую или металлическую арматуру? Чтобы дать точный ответ на эти вопросы, стоит основательно разобраться в преимуществах этих материалов.

Стеклопластиковая или композитная арматура: особенности

Для изготовления композитной арматуры используют стекловолокно, базальт и высокопрочный пластик. Волокна в бухтах могут иметь диаметр от 4 до 12 мм. На волокна наносятся ребра, чтобы обеспечить максимальное сцепление арматуры с конструкцией.

По характеристикам композитная арматура по многим критерием превосходит металлическую, так как она имеет меньший вес, высокую прочность, большую устойчивость к коррозии. К преимуществам стеклопластиковой арматуры отнести можно также влагоустойчивость, диэлектрические свойства, большой выбор сечений, легкость транспортировки. Только вот композитные изделия используются не во всех сферах деятельности. Например, для конструкций с высокими нагрузками на изгибах, в перекрытиях они не подходят. В основном, композитную арматуру используют для армирования ж/д путей, ленточного фундамента, береговых сооружений, мостов, канализационных конструкций и т.п.

Монтаж стеклопластиковой арматуры производится с помощью специальных хомутов, сваривать такие изделия нельзя. Пруты также сгибать не рекомендовано, иначе можно повредить стержень.

Немаловажен тот факт, что эта арматура требует особых условий производства, использование специального оборудования, сырья. Это дает гарантии того, что приобрести композитный материал, изготовленный кустарным способом невозможно.

Металлическая арматура: особенности

Изготавливают ее в виде стальных прутов с рифленой или гладкой поверхностью. В зависимости от области использования выделяют несколько видов этих изделий:

· Рабочие. Отличаются устойчивостью к нагрузкам на растяжение. Нашли применение в изготовлении ригелей, фундаментов и т.п.

· Монтажные. Эти изделия используются при возведении каркасов.

· Распределительные. Способны равномерно распределить нагрузку и удерживать в нужном положении конструкцию.

· Анкерные. Применяется для закладных конструкций.

· Продольные. Купируют растягивающие нагрузки, что не допускает возникновения трещин.

· Поперечные. Не допускают разрыва от скользящих напряжений.

Стальная арматурная продукция имеет разный класс, диаметр. Также маркируются изделия в зависимости от прочности структуры, класса устойчивости к коррозии. Реализуются они в пачках или связках с прутами до 12 м в длину.

К преимуществам стальной арматуры можно отнести отличные адгезионные свойства, огнестойкость, универсальность, устойчивость к деформациям. Огромным достоинством является возможность монтажа как путем связки проволокой, так и сварки.

Что касается недостатков, то стоит отметить большой вес, теплопроводность, подверженность коррозии.

Ценовой аспект

Поскольку материалы имеют различную плотность, то и определить, какая из арматур дешевле, выгоднее с точностью нельзя. Нужно учитывать параметры расхода бетона, качество готовых конструкций, затраты на транспортировку.

Что надежнее?

Изучая все достоинства и недостатки металлической и композитной арматуры можно сказать одно – выбор зависит от нагрузок конструкции. Например, для многоэтажных построек использовать стоит металлические изделия с нужным диаметром сечения. Как упоминалось ранее, стеклопластиковый материал в силу своих характеристик лучше всего подойдет для устройства ленточного фундамента. Кроме того, многие застройщики стали успешно практиковать комбинирование материалов. К примеру, основной каркас сваривается из металлических прутов и заполняется стеклопластиковыми стержнями.

Драйвер со сбалансированной арматурой

и динамический драйвер, в чем реальная разница?

Во всех наушниках, вкладышах и динамиках для создания звука используется звуковой преобразователь или драйвер. Существует несколько различных типов драйверов, которые могут это сделать, но наиболее часто встречающиеся в наушниках-вкладышах — это сбалансированные якорные и динамические драйверы. Читайте дальше, чтобы узнать разницу между сбалансированным якорным драйвером и динамическим драйвером.

Уравновешенный якорь (БА) состоит из катушки, намотанной на якорь. Эта катушка подвешена между двумя магнитами. Когда электрический ток проходит через катушку, его изменения вызывают колебания между магнитом и катушкой. Затем изменения в магнитном поле заставляют якорь вибрировать примерно тысячу раз в секунду. Диафрагма, соединенная с якорем, движется, создавая звуковые волны. Этот конкретный метод лучше всего подходит для определенных частотных диапазонов и может быть настроен для этого с помощью метода кроссовера. По сути, этот кроссовер разделяет звуковой сигнал на несколько частотных линий, и эти линии отправляются на несколько драйверов. Вот почему IEM, как правило, имеют несколько драйверов для увеличения их диапазона с точки зрения частотной характеристики.

Драйверы Westone W30

BA называются «сбалансированными», потому что к якорю, когда он центрирован в магнитном поле, не прилагается результирующая сила. Из-за этого сбалансированная арматура лучше изолирует звук. Кроме того, этот тип конструкции требует меньше энергии, чем динамические драйверы.

Пример: Westone W30 имеет 3 драйвера со сбалансированным якорем. Доступно по адресу Audio46 и (используйте код скидки «majorhifi» , чтобы получить процент от вашего заказа, действуют ограничения) и Амазонка.

Sennheiser IE 80

Напротив, динамические драйверы лучше охватывают весь частотный диапазон. Они построены со звуковой катушкой, прикрепленной к диафрагме. Когда ток проходит через драйвер, который вызывает вибрацию звуковой катушки между двумя магнитами, что приводит к движению диафрагмы и вуаля, звук. Воздух, проходящий через динамический драйвер, на самом деле обеспечивает лучшее воспроизведение басов и в целом обеспечивает более естественный и сплоченный звук.

Пример: Sennheiser IE 80 оснащен динамическим драйвером. Доступно Audio46 по адресу Amazon.

Итак, что все это значит для вашего уха (и вашего кошелька)?

Поскольку для сбалансированной арматуры требуется больше драйверов для лучшего воспроизведения различных частей частотного диапазона, эти IEM, как правило, дороже, чем динамические драйверы. БА также предлагают больше ясности в этом отношении. Тем не менее, они дают больше на высоких частотах. С другой стороны, динамикам не хватает первоначальных деталей, они представляют «более теплый» и более связный тон с лучшим охватом басов. Динамики также обычно больше, чем BA, поэтому ожидайте более крупных корпусов наушников. но вы не должны исключать получение лучшего из обоих миров. Есть модели, которые предлагают и то, и другое.

Надеемся, что наша статья «Сбалансированный драйвер арматуры против динамического драйвера» прояснила все ваши вопросы. Если нет, оставьте нам комментарий внизу.

Сравните рейтинг различных наушников, наушников-вкладышей и внутриканальных мониторов с помощью наших инструментов.

Обсудите это и многое другое на нашем форуме.


MAJORHIFI может получать комиссионные от розничных предложений.

Ответы на семь общих вопросов о работе генератора и двигателя

Вращающееся оборудование настолько распространено, но настолько неправильно понимается, что даже очень опытные электрики и инженеры часто сталкиваются с вопросами об их работе. В этой статье мы ответим на семь наиболее часто задаваемых вопросов. Объяснения краткие и практичные из-за ограниченного места; тем не менее, они позволят вам лучше понять это оборудование.

Вопрос №1: Якорь, поле, ротор, статор: что есть что?

По определению, статор включает в себя все невращающиеся электрические части генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.

Поле машины — это часть, которая создает прямое магнитное поле. Ток в поле не переменный. Обмотка якоря — это та, которая генерирует или имеет приложенное к ней переменное напряжение.

Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.

Генераторы переменного тока . Поле синхронного генератора представляет собой обмотку, на которую подается постоянный ток возбуждения. Якорь – это обмотка, к которой подключена нагрузка. В малых генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.

Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.

Машины постоянного тока . В машинах постоянного тока, как двигателях, так и генераторах, ротором является якорь, а статором — поле. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что ротором всех двигателей и генераторов является якорь.


Вопрос № 2: Я ослабил натяжение пружины на щетках, но они по-прежнему изнашиваются слишком быстро. Почему?

Износ щеток происходит по двум основным причинам: механическое трение и электрический износ. Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызван искрением и искрением щетки, когда она движется по коллектору. Механическое трение увеличивается с давлением щетки; Электрический износ уменьшается с давлением щетки.

Для любой установки щетки существует оптимальное давление щетки. Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимального значения, общий износ снова увеличивается из-за увеличения механического трения.

Всегда следите за тем, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, следует изучить тип и размер используемой щетки. Помните, что плотность тока (ампер на квадратный дюйм щетки) должна соответствовать применению. Надлежащая плотность тока необходима для того, чтобы на коллекторе или контактном кольце образовалась смазочная проводящая пленка. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щеток.

Кроме того, среда с очень низкой влажностью не обеспечивает достаточного количества влаги для образования смазочной пленки. Если в такой среде возникает проблема чрезмерного износа щеток, возможно, вам придется увлажнить место, где работает машина.


Вопрос № 3: Что такое сервис-фактор?

Эксплуатационный коэффициент — это нагрузка, которая может быть приложена к двигателю без превышения допустимых значений. Например, если двигатель мощностью 10 л.с. имеет эксплуатационный фактор 1,25, он будет успешно развивать мощность 12,5 л.с. (10 x 1,25) без превышения заданного повышения температуры. Обратите внимание, что при таком приводе выше номинальной нагрузки двигатель должен питаться с номинальным напряжением и частотой.

Однако имейте в виду, что двигатель мощностью 10 л.с. с коэффициентом эксплуатации 1,25 не является двигателем мощностью 12,5 л.с. Если двигатель мощностью 10 л.с. будет постоянно работать при мощности 12,5 л.с., срок службы его изоляции может сократиться на две трети от нормального. Если вам нужен двигатель мощностью 12,5 л.с., купите его; эксплуатационный коэффициент следует использовать только для кратковременных условий перегрузки.

Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?

Вращающееся магнитное поле — это поле, северный и южный полюса которого движутся внутри статора, как если бы внутри машины вращался стержневой магнит или магниты.

Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это двухполюсный статор с тремя фазами, расположенными с интервалом 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне. Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.

В Позиции 1 фаза B создает сильный северный полюс вверху слева и сильный южный полюс внизу справа. А-фаза создает более слабый северный полюс внизу слева и более слабый южный полюс внизу. C-фаза создает общее магнитное поле с северным полюсом в левом верхнем углу и южным полюсом в правом нижнем углу.

В Позиции 2 фаза А создает сильный северный полюс внизу слева и сильный южный полюс вверху справа; таким образом, сильные полюса повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов].) Слабые полюса также повернулись на 60 [градусов] против часовой стрелки. Фактически это означает, что общее магнитное поле повернулось на 60 [градусов] от положения 1. фаз изменяется более чем на 60 электрических градусов. Анализ позиций 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.

Скорость, с которой вращается магнитное поле, называется синхронной скоростью и описывается следующим уравнением:

S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц ) P = число магнитных полюсов во вращающемся магнитном поле

Если бы в этот статор был помещен постоянный магнит с валом, который позволял бы ему вращаться, его толкали бы (или тянули) вперед с синхронной скоростью. Точно так же работает синхронный двигатель, за исключением того, что магнитное поле ротора (поля) создается электромагнетизмом, а не постоянным магнитом.

Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и в обмотках ротора индуцируется ток, когда вращающееся магнитное поле пересекает их. Этот ток создает поле, противодействующее вращающемуся полю. В результате ротор толкается (или притягивается) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора, чтобы создать крутящий момент. Разница между синхронной скоростью и фактической скоростью вращения ротора называется процентным скольжением; она выражается в процентах.

Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После разгона двигателя пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.

Вопрос № 5: Как работает асинхронный генератор?

Асинхронный генератор по конструкции идентичен асинхронному двигателю. Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор асинхронного генератора вращается первичным двигателем, который вращается быстрее синхронной скорости. Когда обмотки ротора пересекают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность для нагрузки.

Таким образом, асинхронный генератор получает питание от энергосистемы, к которой он подключен. Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерировать. После того, как асинхронный генератор работает, конденсаторы могут использоваться для питания возбуждения.

Вопрос № 6: Почему подшипники генератора и двигателя изолированы?

Магнитное поле внутри двигателя или генератора не совсем однородно. Таким образом, при вращении ротора на валу в продольном направлении (непосредственно вдоль вала) возникает напряжение. Это напряжение вызовет протекание микротоков через смазочную пленку на подшипниках. Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход из строя подшипника. Чем больше машина, тем хуже становится проблема.

Чтобы избежать этой проблемы, корпус подшипника со стороны ротора часто изолируется от стороны статора. В большинстве случаев будет изолирован по крайней мере один подшипник, обычно самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.

Вопрос № 7: Как генераторы переменного тока регулируют переменную, напряжение и мощность?

Хотя элементы управления генератором взаимодействуют, верны следующие общие положения.

  • Выходная мощность генератора контролируется его первичным двигателем.
  • Вклад напряжения и/или реактивной мощности генератора контролируется уровнем тока возбуждения.

Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Добавленный поток тока увеличит силу магнитного поля якоря и заставит генератор замедлиться. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, подводимую к первичному двигателю. Таким образом, дополнительная мощность, необходимая для генератора, регулируется вводом первичного двигателя.

В нашем примере чистый магнитный поток в воздушном зазоре уменьшится, так как увеличение якоря противодействует потоку поля. Если не увеличить поток поля, чтобы компенсировать это изменение, выходное напряжение генератора уменьшится. Таким образом, ток возбуждения используется для управления выходным напряжением.

Давайте посмотрим на другой пример для дальнейшего пояснения. Предположим, к нашему генератору добавлена ​​дополнительная нагрузка VAR. В этом случае выходной ток генератора снова возрастет. Однако, поскольку новая нагрузка не является «настоящей» мощностью, первичный двигатель необходимо увеличивать только настолько, чтобы компенсировать дополнительное падение IR, создаваемое дополнительным током.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *