Расход арматуры на 1 м3 бетона: Расход арматуры на 1 м3 бетона: нормы, примеры расчетов

Расход арматуры на 1 м3 бетона. Расчет арматуры для фундамента

Фундамент – это основа, выдерживающая нагрузку, идущую от всего здания. Поэтому расчет строительных материалов – ответственный этап, от которого зависит и стоимость строения, и срок его эксплуатации.

Армирование фундамента требует точного вычисления расхода арматуры на 1м3 бетона фундамента, и для начала нужно определить тип основы. Монолитная плита, ленточный, либо столбчатый – выбор зависит от грунта, будущей нагрузки. А уже, исходя из проектной документации, где указывается класс стержней, диаметр, идет расчет арматуры фундамента. Как определить объем бетона, число армирующих элементов и, какое должно быть их соотношение друг к другу? Людям, не являющимися профессионалами в данной отрасли, произвести данные вычисления сложно.

Чтобы создать прочный каркас, строители прибегают к сварному методу либо вязальному. Второй предусматривает соединение стержней посредством специальной отожженной нити. Расход вязальной проволоки на тонну арматуры вычисляется, исходя из данных о численности стыковочных соединений и диаметра прутьев.

А вот форма сечения позволит узнать длину нахлеста. Например, для диаметра 12 мм используют нити 1.2 мм, более – 1.4 мм, а длина может варьироваться от 30 до 50 см.

В соответствии со СНиП 52-01-2003 норма расхода арматуры на м2, т.е. число продольных прутьев, не может быть менее 0.1 % от площади поперечного сечения основания. Например, высота ленточного фундамента − 1 м, ширина – 0.5 м, значит, материала понадобится: 1м х 0.5м х 0.1 = 0.05 м ² или 500 мм ².

Каждый расчет количества арматуры индивидуальный, т.к. основывается на типе фундамента и его размерах. Чем больше вес строения, тем больший диаметр выбирают для стержней: для легких подойдут с сечением 10-12 мм, а при возведении тяжелых – 14-18 мм. Расход арматуры на куб бетона основывается на правилах Госстандарта. В нем указаны технические характеристики каждого класса бетона: содержание разных наполнителей и добавок. Узнать коэффициент расхода арматуры стальной можно из норм СНиП 2.03.01-84 и ВСН 416-81 (дополнение 452-84).

Он поможет определить нормативное количество материалов еще на этапе подготовки технической документации.

Расчет арматуры для ленточного фундамента зависит от конкретной схемы армирования. Чаще используют 4 либо 6 продольных прутьев. Определить, сколько их необходимо, поможет ширина: если она составляет менее 40 мм, то хватит и 2-х, а если более – 3 (для одной ленты). Важно, чтобы расстояние от боковой стенки фундамента до крайнего продольного стержня было 5-7 см. Кроме этого, надо знать длину сторон дома, высоту фундамента, диаметр металла и шаг между поперечными прутьями.

Чтобы произвести расчет арматуры на монолитную плиту, стоит учесть несколько важных факторов:

  • Вид – периодический, рифленый профили обеспечат наивысшую сцепку с бетоном.
  • Наличие продольных, поперечных металлических прутьев, диаметр которых не может быть менее 10 мм, а в углах лучше с нагрузкой справятся 16 мм.
  • Определить способ их объединения – вязальный либо сварочный.

Вычислим расход арматуры на фундамент 8 на 8 метров. Размер сечения прутков – 12 мм, а шаг между ними – 200 мм. Расчет делаем по схеме: 8/0.2 +1 (добавляем прут) = 41. А так как они располагаются перпендикулярно, то 41 х 2 = 82. В случае 2-х слоев расчет продолжаем и 82х2 = 164 стержня. Их итоговая длина будет 164х6 м (стандартное значение) = 984 м.
Число вертикальных рассчитываем так: 41х41 = 1681 штук.

Их длина будет равна 200 мм (толщина плиты) – 100 мм (отступ по 50 мм от верхнего края и нижнего) = 100 мм или 0.1 м.
Количество, в м: 0.1х1681 =168.1.

Метраж всех стержней: 984 + 168.1 = 1152.1 м.

Зная из таблиц, сколько весит 1 м прутьев диаметра 12 мм, можно рассчитать общий вес конструкции.

А при определении расхода арматуры на 1 м3 бетона фундамента учитывают плотность бетона (чем она меньше, тем больше понадобится прутьев), размеры, тип фундамента. Также важно выбрать правильный диаметр и шаг армирующего каркаса. Помочь рассчитать расход арматуры на перекрытие, в зависимости от потребностей клиента, помогут операторы компании БЕТАЛЛ.

Арматура для бетона: виды, расход, применение

Тяжелый бетон это прочный материал, который обладает высокой «несущей» способностью «на сжатие». В то же время его способность воспринимать растягивающие и изгибающие напряжения оставляют желать лучшего.

СодержаниеСвернуть

  • Арматура под бетон: виды и классификация
  • Сколько арматуры нужно на куб бетона
  • Образец расчета арматуры для фундамента
  • Немного математики
  • Заключение

Поэтому для обеспечения стойкости сооружений ко всем видам механических нагрузок применяется арматура для бетона, закладываемая сооружение на этапе подготовки к заливке. Бетон без арматуры может воспринимать лишь незначительные нагрузки на изгиб и растяжение. При превышении определенной величины, измеряемой в МПа или кгс/см2 конструкция начинает идти трещинами или полностью разрушается.

Арматура под бетон: виды и классификация

Арматура, применяющаяся в современном строительстве, классифицируется в соответствии со следующими факторами:

  • Материал изготовления – углеродистая сталь или стеклопластик.
  • Технология производства и физическое состояние: стержневая, канатная и проволочная.
  • Вид профиля сечения: круглый, гладкий или рифленый.
  • Работа арматуры в бетоне: напрягаемая или ненапрягаемая.
  • Назначение: рабочая, распределительная и монтажная.
  • Способ установки: сварная или связанная мягкой стальной, медной или алюминиевой проволокой.
Диаметр арматуры, ммПрофильНазначение
6гладкиймонтажная/для формирования хомутов
8монтажная/возможно применение в качестве армирующих элементов буронабивных свай
10периодический (рифленый, ребристый)рабочая/используется для небольших построек с учетом параметров грунта
12рабочая/самые распространенные варианты для возведения ленточного или плитного железобетонного основания
14
16рабочая/используется для больших домов на сложном грунте

Также армирование бетона арматурой может быть иметь поперечный или продольный характер:

  • Поперечное армирование исключает образование наклонных трещин от скалывающих механических нагрузок и связывает бетон сжатой зоны с арматурой в «растянутой» зоне.
  • Продольное армирование воспринимает нагрузку на «растяжение» и препятствует возникновению вертикальных трещин в нагруженной зоне.

Какой вид, тип, диаметр и количество арматуры использовать в каждом конкретном случае, указывается в проектной документации на то или иное здание или сооружение. Тем не менее, многих застройщиков, которые возводят дома, и сооружения без проекта интересует распространенный вопрос: какой расход арматуры на 1 м3 бетона необходимый для обеспечения долговечности сооружения. Рассмотрим расход арматуры на куб бетона подробнее.

Сколько арматуры нужно на куб бетона

Этот законный вопрос задают себе многие застройщики частных и дачных домов, возводящих объекты капитального строительства без разработки дорогостоящего проекта.

При определении количества арматуры на куб бетона учитываются следующие факторы: условия эксплуатации в конкретном регионе России (состояние грунта, глубина промерзания почвы и высота стояния грунтовых вод), вес сооружения, тип конструкции и технические характеристики доступной арматуры.

Приблизительные нормы расхода стального армирования диаметром 12 мм на ленточный фундамент частного дома следующих габаритов 9х6 метров – 18,7 кг на 1 м3 тяжелого бетона.

Отмечая, что расчет характеристики – расход арматуры на м3 бетона должен производиться в каждом конкретном случае индивидуально. В соответствии с требованиями действующего нормативного документа СНиП 52-01-2003, в общем случае количество продольной арматуры не может быть меньше 0,1% от площади поперечного сечения конструкции.

В качестве примера рассмотрим сечение ленточного фундамента частного дома высотой 1 метр и шириной 0,5 метра.Для его усиления потребуется 1х0,5= 0,05 м2 арматуры соответствующего сечения.

Абстрагируясь от нормативных документов регламентирующих количество арматуры на 1 м3 бетона, сообщим читателям этой публикации практические нормы расхода, обеспечивающие высокий уровень прочности и долговечности частного здания.

Образец расчета арматуры для фундамента

Правильно уложенная на фундамент рабочая арматура увеличит его прочность на разрыв и изгиб. Есть еще и вспомогательная арматура, устанавливаемая вертикально. Она обеспечивает прочностью на срез.

В обоих вариантах используются различные виды армирования, что следует учитывать:

  • Первые шаги начинаются с того, что по периметру опалубки, собранной в ленточном котловане, вбиваются вертикально прутья. При этом выдерживаются одинаковые расстояния между стержнями – 50-80 см. Диаметр самой арматуры находится в пределах 0,8-1 см, а высота прутьев равна глубине котлована.
  • К вспомогательным прутам вяжут внизу и вверху горизонтальные пояса, количество прутьев в которых выбирают с учетом рекомендаций, приведенных в таблице:
Ширина пояса, смКоличество прутьев
Не более 40 см2
Более 40 см3

При достаточно глубоком котловане допускается в горизонтальных поясах прокладывать по четыре прута.

  • Расстояние от наружного края пояса до оконечной точки вертикального стержня не должно превышать 10 см.
  • Чтобы армировочный каркас был единой неподвижной конструкцией, особое внимание нужно уделять соединению углов. Здесь лучше использовать систему перекрестных лент, объединив между собой пруты двух горизонтальных поясов. Не помешает для усиления углов и использование арматурной сетки.

Нужно взять во внимание и такой момент – арматура для ленточного фундамента не должна ложиться на землю. Рекомендуется использовать бетонную подложку. До того, как будет выполняться окончательная сборка каркаса, делают первую заливку толщиной в 5-7 см. Когда бетон застынет, можно выполнять сварку (или привязку) друг с другом нижнего и верхнего поясов.

Немного математики

До того, как приступать к укреплению ленточного фундамента, необходимо произвести расчет арматуры. Это позволит заранее запастись нужным количеством материала и выбрать правильные параметры.

Сначала рассматривают схему будущего дома, чтобы определиться с количеством лент под фундамент. У стандартного здания четыре наружные стены и несколько внутренних (в нашем случае пусть будет две несущих), значит, всего лент фундамента – шесть.

Математические вычисления можно рассмотреть на конкретном варианте.

К примеру, строится дом квадратного типа с длиной стены 10 м. Количество прутьев в каждом из основных поясов берется по 2. В данном случае расчет арматуры будет выглядеть так:

  1. Длина дома умножается на количество лент и количество прутьев в двух поясах:
    10 х 6 х 4 = 240 м – общая длина основной арматуры с прутьями d=12 мм.
  2. К периметру дома прибавляют длину внутренних стен (допустим, каждая по 10 м):
    40 + 2 х 10 = 60 м – общая длина ленты.
  3. Предыдущий параметр умножают на 5,4 – средний коэффициент на каждый метр ленты:
    60 х 5,4 = 324 м – общая длина вспомогательной арматуры

Расчет производился для ленты высотой 80 см и шириной 40 см. Математические действия достаточно просты, так что рассчитать нужное количество прутьев не составит труда.

Если идет речь о фундаменте, то это арматура диаметром не менее 12 мм сваренная или связанная в формате ячейки габаритами 50х50 миллиметров. Стены здания из бетона допускается армировать в продольном направлении с шагом 0,4-0,5 метра. При этом сцепление арматуры с бетоном обеспечивается ее конструктивными особенностями – продольным и поперечным рифлением.

Заключение

В заключение повествования стоит отметить, что системных рецептов по армированию конструкций приемлемых для всех возможных случаев нет и не может быть. Частный застройщик, принимающий решение, сколько арматуры на 1 м3 бетона должен руководствоваться климатическими условиями и массой планируемого сооружения.

Это переменные величины, нуждающиеся в уточнении в каждом конкретном случае строительства здания и сооружения.

Количество стали в балках, колоннах, плитах и ​​фундаменте ?

Содержание

  • 1 Как рассчитать полное количество стали в балках, колоннах, плитах и ​​фундаменте на площади 1000 квадратных футов?
    • 1.1 План здания, рассмотренная для оценки
    • 1,2 Количество стали в балках
    • 1,3 Количество стали в столбце
    • 1,4 Количество в RCC Slab
    • 1,5 Количество стали в фундаменте
        • 1.
          5.0.1. сообщений здесь
    • 1.6 Выводы по количеству стали, необходимой для изготовления балок, колонн, плит и фундаментов в соответствии с индийской стандартной системой

Стальные стержни являются наиболее важным материалом при изготовлении бетонных элементов, таких как балки, колонны, плиты и фундамент. в этой статье вы можете узнать, какое общее количество стальных стержней требуется для площади плиты 1000 футов в конструкции здания. Полные значения армирования структурных компонентов зависят от различных факторов, таких как условия нагрузки, архитектурный план, распределение от центра к центру между колоннами и марка бетона.

HYSD Steel Bars

Полная концепция минимального и максимального процентного содержания стали, относящаяся к балкам, колоннам, плитам и фундаменту, объясняется в моем предыдущем сообщении в блоге. Прочтите концепции по ссылке ниже.

Минимальный и максимальный процент стали, необходимый для проектирования здания из железобетона

Смотрите подробности на моем канале Youtube Civil Engineering by shravan

Минимальное и максимальное количество стали в строительных элементах

План здания, рассмотренный для оценки

На приведенном ниже плане показан план двухуровневого дома, который используется в качестве однокомнатной квартиры. Архитектурный план, состоящий из 1 кухни, 1 зала/гостиной, 1 столовой, 1 спальни и туалета согласно требованию клиента.

В таблице ниже показаны свойства здания, использованного в проекте

.
С. № Описание Захваченная недвижимость
1
Коммунальное хозяйство здания
Жилое назначение
2 Количество столбцов 12 №
3 Количество лучей 17 №
4 Размер столбца 12″X12″
5 Размер балки 12”X9”
6 Толщина плиты 5 дюймов
7 Длина плиты 24 фута 3 дюйма
8 Ширина плиты 43’6”
9 Высота здания 10’0”

Площадь плиты = 7,40 м X 13,260 м = 98,124 м 2

Путем преобразования м 2  в футы 2

Теперь площадь плиты = 98,124X10,7639 = 1056,20 квадратных футов площади плиты

Таким образом, площадь плиты считается равной 1057 квадратных футов примерно

Количество стали в балках

В соответствии со стандартом минимальный процент стали составляет 1% от объема требуемого бетона, а максимальный процент стали составляет 2% от объема бетона, необходимого для изготовления балки.

Результаты расчета балки

Объем балки = Количество балок X Размеры балок X длина балки

=17X0,23X0,3X3 = 3,519 м 3

Теперь 2% от вышеуказанного значения = (2/100)X 3,519= 0,07038 м 3

Поскольку мы знаем, что плотность = масса/объем

Итак, Масса = Плотность X Объем

Как известно плотность стального стержня = 7860кг/м 3

При подстановке получим

Масса = 7860 X 0,07038 = 553,1868 кг

Количество стали в колонне

В соответствии со стандартом минимальный процент стали составляет 1% от объема требуемого бетона, а максимальный процент стали составляет 6% от объема бетона, необходимого для изготовления колонны.

Сталь в колонне

Объем колонны = Количество колонн X Размеры колонн X Высота колонны

= 12X0,3X0,3X3,34 = 3,6072 м 3

Максимальное количество стали в колонне 6% от объема

Теперь 6% от вышеуказанного значения = (6/100)X3,6072 = 0,216432 м 3

Поскольку мы знаем, что плотность = масса/объем

Итак, Масса = Плотность X Объем

Как известно плотность стального стержня = 7860кг/м 3

При подстановке получим

Масса = 7860 X 0,216432 = 1701,15552 кг

Количество в железобетонной плите

В соответствии со стандартом минимальный процент стали составляет 0,7% от объема требуемого бетона, а максимальный процент стали составляет 1% от объема бетона, необходимого для изготовления плиты.

RCC Слябовая сталь

Объем сляба = Длина сляба X Ширина сляба X Толщина сляба

= 7,40X13,260X0,125 = 12,2655 м 3

Теперь максимальное количество стали в слябе 2% от объема

Теперь 6% от вышеуказанного значения = (2/100)X12,2655 = 0,24531 м 3

Поскольку мы знаем, что плотность = масса/объем

Итак, Масса = Плотность X Объем

Как известно плотность стального стержня = 7860кг/м 3

При подстановке получим

Масса = 7860 X 0,24531 = 1928,1366 кг

Количество стали в фундаменте

Предположим, что фундамент представляет собой изолированное основание с объемом основания 4’0”X4’0”X5’0”. В соответствии со стандартом минимальный процент стали составляет 0,7% от объема требуемого бетона, а максимальный процент стали составляет 0,8% от объема бетона, необходимого для изготовления фундамента.

Результаты проектирования фундамента

Объем фундамента = Количество колонн X Длина фундамента X Ширина фундамента X Глубина фундамента

= 4’0”X4’0”X5’0” = 12X1,2192X1,2192X1,524 = 23 м

3

Теперь максимальное количество стали в слябе 0,8% от объема

Теперь 6% от вышеуказанного значения = (0,8/100)X23 = 0,184 м 3

Поскольку мы знаем, что плотность = масса/объем

Итак, Масса = Плотность X Объем

Как известно плотность стального стержня = 7860кг/м 3

При подстановке получим

Масса = 7860 х 0,184 = 1446,24 кг

Следите за нашими предыдущими сообщениями здесь

Какие кирпичи являются лучшими блоками AAC или красными кирпичами в строительстве?

Что такое базовая система изоляции? Различные типы систем изоляции основания, используемые при проектировании зданий?

Полный проект здания G+1 с помощью программного пакета Staad pro V8i ?

Что такое прочность на сжатие и как определить прочность куба на сжатие по нормативам.

Полный расчет состава смеси для бетона марки М20 с использованием кодовых стандартов IS 10262 и IS 456.

Выводы по количеству стали, необходимой для изготовления балок, колонн, плит и фундаментов в соответствии с индийской стандартной системой

Теперь описанные выше концепции относятся к полному расчету количества стали, необходимой для балок, колонн, плиты и фундамента. Для плиты площадью 1056кв.м требуется примерно 553,1868 кг стали, для колонн требуется примерно 1701,15552 кг стали, для железобетонной плиты требуется примерно 1,928,1366 кг стали и, наконец, для фундамента требуется около 1,446,24 кг стали в конструкции здания первого этажа.

Для получения дополнительной информации о концепциях гражданского строительства и лекциях по проектированию зданий следите за моим каналом на YouTube «Гражданское строительство» от shravan.

Спасибо, что прочитали эту статью,

Ваш Шраван,

Хорошего дня.

Использование понизителей водоотдачи, замедлителей и суперпластификаторов

Использование понизителей водоотдачи, замедлителей и суперпластификаторов
Использование понизителей воды, замедлителей, и суперпластификаторы.

Введение

На многие важные характеристики бетона влияет соотношение (по массе) воды к вяжущим материалам (в/см), используемым в смеси. При уменьшении количества воды цементное тесто будет иметь более высокую плотность, что приводит к более высокому качеству пасты. Повышение качества пасты дают более высокую прочность на сжатие и изгиб, более низкую проницаемость, увеличение устойчивость к атмосферным воздействиям, улучшение сцепления бетона и арматуры, уменьшить изменение объема от высыхания и намокания и уменьшить усадку склонность к растрескиванию (PCA, 1988).

Уменьшение содержания воды в бетонной смеси должно производиться в таких таким образом, чтобы происходил полный процесс гидратации цемента и достаточный удобоукладываемость бетона сохраняется для укладки и уплотнения во время строительство. Вес/см, необходимый для завершения процесса гидратации цемента. колеблется от 0,22 до 0,25. Наличие дополнительной воды в смеси необходим для удобства укладки и отделки бетона (удобоукладываемости бетона). Уменьшение содержания воды в смеси может привести к получению более густой смеси. что уменьшает работоспособность и увеличивает возможные проблемы с размещением.

Понизители водоотдачи, замедлители схватывания и суперпластификаторы являются добавками для бетона, которые добавляют для уменьшения содержания воды в смеси или для замедления скорости схватывания бетона при сохранении текучесть бетонной смеси. Добавки используются для модификации свойства бетона или раствора, чтобы сделать их более пригодными для работы вручную или для других целей, таких как экономия механической энергии.

Водоредуцирующие добавки (WRA)

Использование WRA определяется как тип A в ASTM С 494 . WRA влияет в основном на свойства бетона в свежем виде за счет снижения количество используемой воды от 5% до 12% при поддержании определенного уровня консистенции, измеряемой по осадке в соответствии с ASTM C 143-90. использование WRA может ускорить или замедлить начальное время схватывания бетона. WRA, который задерживает начальное время схватывания более чем на три часа позже классифицируется как WRA с замедляющим эффектом (тип D). Обычно используемый WRA это лигносульфонаты и гидрокарбоновые (НС) кислоты. Применение НС-кислот поскольку WRA требует более высокого содержания воды по сравнению с лигносульфонатами. Стремительный кровотечение является проблемой для бетона, обработанного НС-кислотами.

Усиление обморока различается в зависимости от его типа и дозировки. Типичный дозировка основана на содержании вяжущего материала (миллилитров на сто килограммов). На рисунке ниже показано влияние дозировка лигносульфонатов и НС кислоты при резком спаде. Он показан на рисунке что УВ кислоты дают более высокую осадку по сравнению с лигносульфонатами с такая же дозировка.

Рисунок 1. Влияние дозировки замедлителей на спад (Невилл, 19 лет).95).

WRA в основном используется для укладки бетона в жаркую погоду, перекачки, и треми. Требуется тщательная укладка бетона, так как начальное схватывание время бетона пройдет на час раньше. Также показано, что использование WRA даст более высокую начальную прочность бетона на сжатие (до 28 дней) на 10% по сравнению с контрольной смесью. Другое преимущество Использование WRA заключается в том, что достигается более высокая плотность бетона, что делает бетон менее проницаемы и имеют более высокую износостойкость.

Добавки, замедляющие схватывание

Использование этой добавки определено в ASTM C494 . Существует два типа замедлителей, определяемых как тип B (замедлители добавки) и тип D (добавки, уменьшающие содержание воды и замедляющие схватывание). Главный разница между этими двумя заключается в характеристике водопонижения в типе D, который обеспечивает более высокую прочность на сжатие за счет снижения отношения веса к см.

Добавки, замедляющие схватывание, используются для замедления скорости схватывания бетона. К замедление времени начальной настройки, бетонная смесь может оставаться в своем свежем состоянии дольше, прежде чем она станет к его затвердевшей форме. Использование замедлителей полезно для:

  • Комплексная укладка бетона или заливка
  • Специальная архитектурная отделка поверхности
  • Компенсация ускоряющего действия высокой температуры в сторону начального набор
  • Предотвращение образования холодных швов при последовательных подъемах.
Замедлитель может быть образован органическим и неорганическим материалом. Органический материал состоит из неочищенных Ca, Na, NH 4 , солей лигносульфокислот, гидроксикарбоновые кислоты и углеводы. Неорганический материал состоит оксидов Pb и Zn, фосфатов, солей магния, фторатов и боратов. Обычно используемыми замедлителями схватывания являются лигносульфокислоты и гидроксилированные карбоновые кислоты. (HC) кислоты, которые действуют как Тип D (Водоредуцирующие и замедляющие примеси). Применение лигносульфонатных кислот и гидроксилированных карбоновых кислот замедляет время первоначального схватывания не менее часа и не более трех часов при использовании от 65 до 100 или Ф.

Исследование влияния температуры воздуха на замедление начального времени схватывания (измеряется сопротивлением проникновению, как предписано в ASTM C 403 92) показывает, что уменьшающийся эффект при более высокой температуре воздуха (Невилл, 1995). В таблице ниже описано влияние температуры воздуха по замедлению времени схватывания:

Таблица 1 Температура воздуха и замедление времени начального схватывания

Тип добавки Описание Замедление времени начального схватывания (ч:мин) при температуре
30 или С 40 или С 50 или С
Д Гидроксильная кислота 4:57 1:15 1:10
Д Лигнин 2:20 0:42 0:53
Д Лигносульфонаты 3:37 1:07 1:25
Б На основе фосфатов 3:20 2:30

Основным недостатком применения замедлителя схватывания является возможность быстрого затвердевания, когда быстрая потеря осадки приведет к затруднению укладка бетона, укрепление и отделка. Добавка расширенного набора была разработана как еще одна замедляющая добавка. Преимущества этого примесью по сравнению с обычной является способность реагировать с основные компоненты цемента и контролировать характеристики гидратации и схватывания бетона, в то время как обычный будет реагировать только с C 3 А.

Во избежание чрезмерного замедления требуется осторожное использование замедлителя. быстрая потеря осадки и чрезмерная пластическая усадка. Пластическая усадка есть изменение объема свежего бетона по мере испарения поверхностной воды. Количество На испарение воды влияют температура, относительная влажность окружающей среды, и скорость ветра. Надлежащее затвердевание бетона и достаточное водоснабжение поверхностное испарение предотвратит растрескивание при пластической усадке. Количество количество воды, необходимое для предотвращения растрескивания при пластической усадке, указано в таблице ниже:

Рис. 2 Скорость испарения влаги с поверхности

Добавка пролонгированного действия широко используется в качестве стабилизатора для промывочная вода для бетона и свежего бетона. Добавление добавки расширенного набора позволяет повторно использовать промывочную воду для следующей партии, не затрагивая бетон характеристики. Эту добавку также можно использовать для доставки бетона на большие расстояния. и поддерживать спад. Факторы, влияющие на использование этой добавки, включают: дозировка и температура окружающей среды бетона.

Суперпластификаторы (высокий уровень содержания воды)

ASTM C494 Тип F и Тип G, высокий диапазон Понизитель содержания воды (HRWR) и добавки-замедлители используются для уменьшения количества воды на 12-30% при сохранении определенного уровня консистенции и обрабатываемость (обычно от 75 мм до 200 мм), а также для повышения обрабатываемости для уменьшения соотношения Вт/см. Использование суперпластификаторов может привести к высоким прочный бетон (прочность на сжатие до 22000 фунтов на квадратный дюйм). Суперпластификаторы также может быть использован в производстве текучего бетона, используемого в тяжелом армированном бетоне. конструкция с труднодоступными участками. Требования к производству текучего бетона определено в ASTM C 1017. Влияние суперпластификаторов на бетон поток показан на диаграмме ниже:



Рис. 3 Зависимость между таблицей текучести и содержанием воды в бетоне с пластификаторами и без них (Neville, 1995).

Еще одним преимуществом суперпластификаторов является бетон . раннее повышение прочности (от 50 до 75%). Начальное время схватывания может быть ускорено на час раньше или замедлено на час позже в соответствии с его химической реакцией. Задержка иногда связана с диапазоном частиц цемента от 4 до 30 м м. Использование суперпластификаторов существенно не влияет на поверхностное натяжение. воды и не уносит значительного количества воздуха. Основной недостаток использования суперпластификатора – потеря удобоукладываемости в результате быстрой осадки потери и несовместимость цемента и суперпластификаторов.

Суперпластификаторы представляют собой растворимые макромолекулы, которые представляют собой сотни раз больше молекулы воды (Gani, 1997). Механизм суперпластификаторов известна как адсорбция C 3 A, которая нарушает агломерацию путем отталкивания одинаковых зарядов и высвобождения захваченной воды. Адсорбция Механизм действия суперпластификаторов частично отличается от ВРА. разница связана с совместимостью между портландцементом и суперпластификаторами. необходимо обеспечить что суперпластификаторы не фиксируются с C 3 А в цементе частицы, что приведет к снижению удобоукладываемости бетона.

Типичная дозировка суперпластификаторов, используемых для повышения удобоукладываемости бетона колеблется от 1 до 3 литров на кубический метр бетона, где жидкие суперпластификаторы содержали около 40 % активного вещества. В сокращении водоцементного отношения, используется более высокая дозировка, то есть от 5 до 20 литров за кубометр бетона. Дозировка, необходимая для бетонной смеси, уникальна и определяется Болотный конус Тест.

Существует четыре типа суперпластификаторов: сульфированный меламин, сульфированный нафталин, модифицированные лигносульфонаты и комбинация высоких дозировок водоредуцирующих и ускоряющих добавок. Обычно используется меламин Суперпластификаторы на основе нафталина и нафталина. Применение нафталиновой основе Преимущество замедления и сохранения резкого спада. Это до к модифицированному процессу гидратации сульфонатами

Дозаторы добавок

Основная функция дозатора согласно определению в бюллетене ACI E4-95:

  • Для транспортировки добавки со склада в партию
  • Для измерения количества необходимых примесей
  • Обеспечить проверку выданного объема
  • Ввести добавку в шихту.
Добавки дозируются в жидкой форме для обеспечения надлежащего диспергирования. в бетонной смеси.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *