Схема автомата – Подключение автоматических выключателей (схема, однополюсных, двухполюсных, трехполюсных)

Содержание

Как подключить автоматический выключатель | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Подключить автоматический выключатель может практически каждый, но зачастую выполняют это не совсем правильно.

Дело в том, что между электриками идут постоянные споры: кто-то питание подключает на неподвижные контакты, а кто-то на подвижные. Спорить не нужно, открываем ПУЭ и читаем п.3.1.6:

Почти во всех автоматических выключателях, УЗО и дифавтоматах неподвижный контакт располагается сверху.

Вот пример однополюсного автомата ВА47-29 С16:

Аналогично, у дифавтомата АВДТ 32, С16, 30 (мА):

Из  пункта 3.1.6. можно сделать вывод, что словосочетание «должно выполняться, как правило» носит скорее всего рекомендательный характер, т.е. не запрещает. Вот поэтому этим пунктом многие электрики и пренебрегают. В принципе это на работу автомата никак не влияет, он все равно отключится при коротком замыкании или перегрузе — неоднократно проверял сам лично.

Рассмотрим вкратце устройство модульного однополюсного автомата ВА47-29. Дело в том, что поверхность неподвижного и подвижного контактов имеют разнородные сплавы. Согласно заводским испытаниям IEK, при коммутации переменного тока выгорание обоих контактов идет равномерно, поэтому здесь не критично с какой стороны подключать питание. А вот при коммутации постоянного тока значительной величины периодически наблюдается перенос металла с одного контакта на другой, поэтому в этом случае питание нужно подавать только на неподвижные контакты.

Лично я сторонник того, чтобы питание всегда подавалось на неподвижные контакты с целью привести к однообразию (везде одинаково) все схемы подключения автоматических выключателей, особенно, в жилом секторе.

При этом повысится электробезопасность при обслуживании и эксплуатации электрических сетей, уменьшатся ошибки персонала при выводе в ремонт электрооборудования и т.д.

Перейдем к практике.

Подключение однополюсных и двухполюсных автоматических выключателей

Как правило, в однофазных сетях 220 (В) применяют однополюсные или двухполюсные автоматы. Если ввод в квартиру выполнен двумя проводами (фаза L — красный цвет, ноль PEN — синий цвет), т.е. у Вас система TN-C (читайте про нее более подробно), то схема будет следующей:

Питающая фаза подключается на клемму (1) вводного однополюсного автомата 40 (А), а далее с клеммы (2) проходит через однофазный счетчик и распределяется по групповым автоматам 16 (А). Питающий ноль проходит через счетчик и подключается к нулевой шине PEN.

Если ввод в квартиру выполнен тремя проводами (фаза L — красный цвет, ноль N — синий цвет, земля PE — желто-зеленый цвет), т.е. у Вас система TN-C-S или TN-S, то схема будет такой:

В этом случае питающая фаза подключается к вводному двухполюсному автомату 40 (А) на клемму (1), а ноль на клемму (3). С выходной клеммы (2) фаза проходит через счетчик, вводное УЗО 50 (А), 100 (мА) и распределяется по групповым автоматическим выключателям 16 (А). С выходной клеммы (4) ноль проходит через счетчик, вводное УЗО 50 (А), 100 (мА) и подключается на нулевую шину N.

Схема подключения трехполюсных и четырехполюсных автоматов защиты

Для подключения трехфазных двигателей применяются трехполюсные автоматы, например, ВАМУ-10.

На неподвижные контакты (1,3,5) подключается трехфазное питающее напряжение (А,В,С), а к подвижным контактам (2,4,6) подключается обмотка двигателя.

В трехфазных сетях с системой заземления TN-C, TN-C-S или TN-S также можно применять трехполюсные автоматические выключатели.

В трехфазных сетях с системой заземления TN-C-S или TN-S допускается устанавливать четырехполюсные автоматы. Они подключаются аналогично, только там добавлен еще один полюс «N».

 

Присоединение жил проводов и кабелей к автомату

У каждого автомата свои требования по подключению проводников: сечение, длина зачищаемой изоляции, тип соединения. Читайте паспорт — там все написано.

Например, для подключения автомата ВА47-29 С10 требуется зачистить жилу провода примерно на 0,7-1 (см).

Затем необходимо вставить ее в контактный зажим и зафиксировать с помощью винта.

После затягивания проверьте фиксацию провода путем легких подергиваний в разные стороны.

Если у Вас гибкий провод, то лучше применять наконечники соответствующего сечения.

Следите за тем, чтобы под контактный зажим не попала изоляция провода.

Не нужно сильно затягивать винт, т.к. это может привести к деформации корпуса автоматического выключателя. При деформации корпуса меняется положение внутренних токоведущих частей, что приводит к быстрому выходу его из строя или повышенному нагреву.

Как подключить несколько автоматических выключателей в одном ряду?

Если в одном ряду в щитке установлено несколько автоматов, то целесообразно соединить их между собой не перемычками из провода, а специальной медной соединительной шинкой (ШС) — «гребенкой». Она отрезается по нужной длине и подключает фазы ко всем автоматам в ряду в необходимой последовательности.

Более подробно о ней читайте в этой статье.

P.S. На этом я завершаю свою статью. Все имеющиеся у Вас вопросы задавайте в комментариях. Буду рад Вам помочь.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Устройство и принцип работы автоматических выключателей в различных ситуациях

Для обеспечения защиты электрических сетей используют автоматические выключатели. Подобное оборудование успело завоевать популярность благодаря легкому монтажу и ремонту, а также компактным габаритам.

Внешне данное устройство выглядит как короб из пластика, который обладает сопротивлением высоким температурам. Передняя панель оснащается рукояткой для включения и отключения оборудования. Задняя панель оснащена специальным фиксатором для закрепления выключателя, а верхние и нижние крышки оснащаются клеммами особой формы. В этой статье мы рассмотрим типы данных устройств, их конструкцию, а также принцип работы дифференциального автоматического выключателя.

Вернуться к содержанию

Виды автоматических выключателей

Подобные устройства делятся на несколько типов:

  • установочные автоматы – оснащаются пластиковым коробом, благодаря чему данные устройства можно монтировать в жилых помещениях без риска получения повреждений током;
  • универсальные автоматы – не оснащаются защитным корпусом, а потому их можно монтировать только в специальном распределительном оборудовании;
  • быстродействующие автоматы – особенность заключается в том, что время реагирования составляет менее 5 миллисекунд;
  • автоматы замедленного действия – в таких моделях время срабатывания колеблется в диапазоне от 10 до 100 миллисекунд;
  • селективные – подобное оборудование можно настроить на определенное время выключения в области тока короткого замыкания;
  • электрооборудование обратного тока – техника срабатывает исключительно при смене направления тока в определенном участке;
  • поляризованные устройства – обесточивают участок цепи при условии значительного скачка силы тока;
  • неполяризованные – работают так же, как и предыдущие только во всех направлениях тока.

Разные виды автоматических выключателей

Скорость отключения напрямую зависит от принципа действия устройства. Также скорость отключения зависит от наличия условий для моментального обесточивания определенного участка цепи. Данные условия созданы в электрооборудовании, которые работают по методу токоограничения.

Вернуться к содержанию

Конструкция автоматического выключателя

Методы работы, а также конструктивные особенности подобных устройств зависят от области применения и задачами, возложенными на устройство. Запуск и выключение оборудования может происходить в ручном режиме или посредством электромагнитного и электродвигательного привода.

Ручная схема отключения присутствует в защитных устройствах, которые рассчитаны на силу тока, не превышающую 1000 ампер. Главной особенностью подобной техники является предельная коммутационная способность, которая не связана со скоростью движения рукояти. Это значит, что операция должна быть проведена до конца, чтобы изменения возымели эффект.

В некоторых случаях возникает необходимость самостоятельного ремонта выключателей, рекомендуем прочитать данную статью с пошаговой инструкцией. О том, как правильно обустроить заземление в доме можно узнать, перейдя по ссылке http://vse-postroim-sami.ru/engineering-systems/electrician/433_kak-sdelat-zazemlenie-v-dome/ Для разведения проводки придется провести такую операцию, как штробление стен.

Электродвигательный или электромагнитные элементы запитаны от электрического тока. Такие схемы должны быть оснащены защитой от произвольного повторного запуска. Также процесс включения устройства должен останавливаться при условии повышения или понижения напряжения в защищаемом участке цепи от 85 до 110 % от нормального.

Во время перегрузки сети или короткого замыкания прекращение работы автомата происходит в независимости от положения рукояти, отвечающей за запуск/отключение оборудования.

Конструкция автоматического выключателя с электромагнитным расцепителем

Одним из самых важных компонентов автоматических выключателей можно считать расцепитель. Данная деталь контролирует определенную характеристику участка сети и во время аварийной ситуации воздействует на специальный элемент, который выключает оборудование. Помимо этого, расцепитель необходим для удаленного выключения автомата. Самыми распространенными на современном рынке являются нижеперечисленные виды:

  • электромагнитные – осуществляют защиту проводки от коротких замыканий;
  • термические – нужны для осуществления защиты от скачков силы тока;
  • смешанные;
  • полупроводниковые – данный тип отличается легкостью регулировки и значительной стабильностью настроек отключения.

В отдельных случаях, когда требуется осуществить соединения цепи без электрического тока, могут использовать защитное электрооборудование, не оснащенные расцепителями.

В современном мире производится огромное количество защитного электрооборудования, которое можно использовать в разных климатических условиях и размещать в разных помещениях. Также разные серии устройств рассчитаны на установку в сложных условиях и характеризуются различной степенью сопротивления агрессивным воздействиям внешних факторов.

Вся необходимая информация, с которой следует ознакомиться до покупки подобного оборудования, находится в нормативно-технической документации. В большинстве случаев она представлена ТУ производителя. В редких случаях для обобщения товаров, которые имеют используются в различных сферах и изготавливаются одновременно большим числом компаний, уровень документации может быть повышен, причем, в некоторых случаях до Госстандарта.

Разные фиды расцепителей

Конструкция данного оборудования включает в себя следующие компоненты:

  • система автоматического расцепления;
  • система контроля;
  • система контактов;
  • решетка гашения дуги;
  • расцепители.

Контактная система представлена некоторым количеством статичных контактов, которые установлены в корпусе, а также несколькими динамичными контактами. Последние закрепляются на полуоси рукояти управления при помощи шарниров. Система предназначена для одинарного разрыва участка электрической сети.

Механизм погашения дуги монтируется в обоих полюсах автомата и необходим для захвата дуги в и ее охлаждение до полного исчезновения. Механизм, по сути, является камерой для гашения дуги, в которой установлена деионная решетка из металлических пластинок. Иногда механизм может оснащаться специальными искрогасителями в виде фибровых пластинок.

Система автоматического расцепления является шарнирным устройством на три или четыре звена. Данная система используется для мгновенного расцепления и выключения системы контактов. Может использоваться и в ручных устройствах, и в автоматических.

Электромагнитный расцепитель является обычным электромагнитом с крюком. Обрудование предназначено для выключения всей системы в автоматическом режиме при коротком замыкании. Некоторые расцепители дополнительно оснащаются системой гидравлического замедления.

Тепловой расцепитель в автоматах представлен специальной металлической пластинкой. При значительном повышении напряжения данная пластинка деформируется, после чего осуществляется автоматическое выключение. Время выдержки сокращается по мере повышения напряжения.

Схема автоматического выключателя с тепловой защитой

Полупроводниковый элемент представлен измерительным устройством, магнитом и блоком реле. Магнит оказывает воздействие на систему автоматического расцепления автоматического выключателя.

Измерительный элемент в данном случае представлен трансформатором электричества или магнитным усилителем. Первый используется для переменного тока, а второй для постоянного.

В большинстве защитного электрооборудования используются совмещенные расцепители, которые используют термоэлементы для защиты от повышения силы тока и магнитные катушки для защиты от коротких замыканий.

В конструкции защитного устройства присутствуют некоторые компоненты, которые монтируются внутрь или снаружи автомата. Данные элементы могут быть различного рода расцепителями, дополнительными контактами, приводами для удаленного контроля, сигнализацией автоматического выключения.

Вернуться к содержанию

Принцип работы автоматического выключателя

В обычном рабочем режиме через автоматический выключатель проходит ток, сила которого должна быть меньшей и равной нормальному значению. Электричество, которое используется для запитки устройства, подается на клемму в верхней части устройства, которая соединена со статичным контактом. С этого контакта ток идет на динамичный контакт, после чего проходит через металлический проводник и попадает на катушку соленоида.

После прохождения через катушку электричество идет по термическому расцепителю, и только после этого ток приходит на клемму в нижней части защитного электрооборудования.

Во время значительного повышения напряжения или риска короткого замыкания защитное электрооборудование отключает сеть. Это происходит с помощью системы автоматического расцепления, которая запускается посредством термического или электромагнитного расцепителя.

Принцип работы автоматического выключателя

Вернуться к содержанию

Принцип работы автомата во время перегруза цепи

Главное назначение автоматических выключателей заключается в обеспечении защиты участка сети во время перегруза или короткого замыкания. Перегруз сети означает, что сила тока в определенном участке перевалила через максимальное значение для данного защитного электрооборудования. Слишком сильный ток проходит по тепловому расцепителю, вызывая его деформацию. В зависимости от разницы действующей силы тока и обычного значения деформация достигает определенного уровня, результатом которой может стать отключение автомата.

Тепловая защита автомата срабатывает не моментально, поскольку для деформации металлической пластинки необходимо достаточно нагреть ее. Время на отключение напрямую зависит от избыточной силы тока в защищаемом участке и может составлять как несколько секунд, так и час.

Подобная задержка необходима, чтобы автомат не срабатывал постоянно при небольших или непродолжительных скачках силы тока в определенном участке сети. В большинстве своем, такие скачки происходят во время включения электрооборудования с высокими стартовыми токами.

Сила тока, при которой срабатывает термический элемент в защитном электрооборудовании, выставляется посредством регулировочной детали еще на заводе-производителе. Как правило, данное значение должно превышать нормальное число в 1.1 – 1.5 раза.

Также следует знать, что в помещениях с высокой температурой автомат может работать некорректно, поскольку термический элемент может деформироваться быстрее, чем нужно. В свою очередь в помещениях с низкой температурой автомат сработает позже необходимого времени.

Принцип работы устройства во время перегруза цепи

Перегрузка электрической сети возникает в случае подключения большого количества приборов, общая мощность потребления которых, превышает нормальную мощность. Включение нескольких мощных электроприборов скорее всего вызовет срабатывание термического элемента.

Если такое произошло, следует до включения автомата определиться с тем, какие приборы следует отключить, произвести отключение и немного подождать. Это время необходимо, чтобы термический элемент в защитном электрооборудовании остыл и встал в начальное положение.

Вернуться к содержанию

Принцип работы автоматического выключателя во время короткого замыкания

Устройство автоматических выключателей позволяет защищать электрическую цепь не только от перегруза, но и от коротких замыканий. Во время таких аварийных ситуаций ток повышается настолько, что может расплавиться изоляция проводки. Для предотвращения такой неприятности следует моментально отключить сеть. Эта задача возложена на электромагнитный расцепитель.

Данный элемент состоит из катушки соленоида и стального сердечника, который фиксируется специальной пружиной. Моментальный скачок силы тока в обмотке катушки ведет к пропорциональному повышению магнитной индукции, вследствие чего сердечник плотнее прилегает к пружине. По мере нарастания магнитной индукции стальной сердечник преодолевает воздействие пружины и прижимает выключатель.

После этого моментально размыкаются контакты, и подача электричества в защищаемый участок прекращается. Электромагнитный элемент включается моментально и предотвращает воспламенение изоляции.

Во время отключения контактов при аварийной ситуации между ним возникает так называемая дуга, максимальная температура которой составляет 3000 градусов. Само собой разумеется, что элементы защитного электрооборудования следует защитить от настолько высоких температур. Для этих целей автоматы оснащаются специальными системами гашения дуги. Это устройство внешне похоже на коробку, которая состоит из нескольких пластинок из металла.

Разные дугогасительные камеры

Высокотемпературная дуга появляется в месте отключения контактов. После этого один край дуги движется по динамичному контакту, а другой проходит по статичному элементу, переходит на металлический проводник, а затем доходит до задней грани системы гашения дуги. Попадая на решетку из пластинок, дуга делится на части, теряет температуру и в итоге гаснет. Снизу автоматического выключателя находятся специальные отверстия для вывода образующихся в момент гашения дуги газов.

Если защитное электрооборудование сработало из-за короткого замыкания, то у вас не получится включить электричество, пока вы не обнаружите саму причину возникновения поломки. В большинстве случаев проблема кроется в выходе из строя какого-либо электрооборудования.

Для повторного запуска устройства следует отсоединить электрооборудование и попытаться запустить выключатель. Если сделать это получилось и оборудование не выбило в ближайшее время, значит, проблема заключается в поломке техники. Останется только опытным путем выяснить, какое именно устройство вышло из строя. Если автоматический выключатель срабатывает после отключения всех приборов, значит, проблема в нарушении изоляции проводки. Для устранения подобной неисправности придется вызывать специалистов, которые смогут обнаружить и устранить поломку.

Если вы столкнулись с такой проблемой, как постоянные отключения защитного электрооборудования, то не стоит устанавливать новое устройство с более высоким номинальным значением силы тока – эти действия проблему не разрешат. Данное оборудование монтируется с учетом площади поперечного сечения провода, а значит, слишком высокий ток попросту не сможет возникнуть в проводке. Выяснить причину неисправности и устранить ее помогут соответствующие специалисты, самостоятельные действия крайне рискованны.

Вернуться к содержанию

Видео

Полезно? Сохраните себе на стену! Спасибо за лайк!

vse-postroim-sami.ru

Устройство и принцип работы автомата Калашникова • ВсеЗнаешь.ру

Михаил Тимофеевич Калашников, один из самых известных в истории конструкторов стрелкового оружия, прославился, в сущности, созданием одного автомата — АК-47. Однако этот автомат можно назвать самым известным оружием в современном мире.

Во времена Холодной войны автомат Калашникова стал таким же символом Восточного блока, каким для Запада была автоматическая винтовка М-16.

Однако надежность автомата и простота его конструкции сделали его популярным как у военных, так и среди членов различных военизированных формирований во всем мире.

Устройство автомата Калашникова

Схема автомата Калашникова состоит из следующих основных элементов:
  • ствольной коробки со стволом – служит для соединения механизмов автомата и обеспечивает закрывание канала створа затвором и запирание затвора;
  • прицельного приспособления;
  • складывающегося приклада и рукоятки;
  • затвора – для досылания патрона в патронник;
  • возвратного механизма – для возвращения затворной рамы в переднее положение;
  • УСМ – для спуска курка с боевого взвода и проведения автоматической или одиночной стрельбы;
  • магазина, размер которого определяет, сколько патронов в автомате Калашникова. Стандартная емкость – 30 патронов.

Тактико-технические характеристики автоматов АК-47:

  • Калибр – 7,62 мм.
  • Применяемый патрон – 7,62х39 мм,
  • Длина – 870 мм,
  • Длина с приткнутым штыком – 1070 мм,
  • Длина канала ствола – 415 мм,
  • Емкость магазина – 30 патронов,
  • Вес без магазина и штыка – 3,8 кг,
  • Вес со снаряженным магазином – 4,3 кг,
  • Эффективная дальность стрельбы – 600 м,
  • Прицельная дальность – 800 м,
  • Начальная скорость пули – 715 м/сек,
  • Режим ведения – одиночный/ непрерывный,
  • Дульная энергия – 2019 дж,
  • Темп стрельбы – 660 выстр/мин,
  • Скорострельность – 40-100 выстр/мин,
  • Дальность прямого выстрела по ростовой фигуре – 525 м,
  • Нарезы – 4, правосторонние, шаг 240.

Как работает автомат Калашникова

Это должен знать каждый мужик! 3D-анимация, которая подробно демонстрирует принцип работы самого легендарного стрелкового оружия. Как работают механизмы и происходит выстрел из АКМ?

Еще больше интересного:

Оставить комментарий ← Жми «Нравится» и читай нас в Facebook

Интересные факты

vseznaesh.ru

Схема автоматического выключателя - Всё о электрике в доме

Устройство автоматического выключателя

Автоматический выключатель (автомат) служит для нечастых включений и отключений электрических цепей и защиты электроустановок от перегрузки и коротких замыканий, а также недопустимого снижения напряжения. По сравнению с плавкими предохранителями автоматический выключатель обеспечивает более эффективную защиту, особенно в трёхфазных цепях, так как в случае, например, короткого замыкания производится отключение всех фаз сети. Предохранители в этом случае, как правило, отключают одну или две фазы, что создаёт неполнофазный режим, который также является аварийным.

Автоматический выключатель (рис. 1) состоит из следующих элементов: корпуса, дугогасительных камер, механизма управления, коммутирующего устройства, расцепителей.

Рис. 1. Автоматический выключатель, серия ВА 04-36 (устройство выключателя): 1- основание, 2- камера дугогасительная, 3, 4-пластины искрогасительные, 5-крышка, 6-пластины. 7-звено, 8-звено, 9-рукоятка, 10-рычаг опорный, 11-защелка, 12- рейка отключающая, 13- пластина термобиметаллическая, 14-расцепитель элетромагнитный, проводник гибкий, 16-токопровод, 17- контактодержатель, 18-контакты подвижные

Для включения автоматического выключателя, находящегося в расцепленном положении (положение «Отключено автоматически»), механизм должен быть взведен путем перемещения рукоятки 9 выключателя в направлении знака «О» до упора. При этом происходит зацепление рычага 10 с защелкой 11, а защелки – с отключающей рейкой 12. Последующее включение осуществляется перемещением рукоятки 9 в направление знака «1» до упора. Провал контактов и контактное сжатие при включении обеспечивается за счет смещения подвижных контактов 18 относительно контактодержателя 17.

Автоматическое отключение автомата происходит при повороте отключающей рейки 12 любым расцепителем независимо от положения рукоятки 9 выключателя. При этом рукоятка занимает промежуточное положение между знаками «О» и «1», указывая, что выключатель отключен автоматически. Дугогасительные камеры 2 установлены в каждом полюсе выключателя и представляют собой деионные решетки, состоящие из ряда стальных пластин 6.

Искрогасители, содержащие искрогасительные пластины 3 и 4, закреплены в крышке 5 выключателя перед отверстиями для выхода газов в каждом полюсе автоматического выключателя. Если в защищаемой цепи, хотя бы одного полюса ток достигает величины равной или превышающей значение уставки по току, срабатывает соответствующий расцепитель и выключатель отключает защищаемую цепь независимо от того, удерживается ли рукоятка во включенном положении или нет. Электромагнитный максимальный расцепитель тока 14 устанавливается в каждом полюсе выключателя. Расцепитель выполняет функцию мгновенной защиты от короткого замыкания.

Дугогасительные устройства необходимы в электрических аппаратах. коммутирующих большие токи, так как возникающая при разрыве тока электрическая дуга вызывает подгорание контактов. В автоматических выключателях применяются дугогасительные камеры с деионным гашением дуги. При деионном гашении дуги (рис. 2.) над контактами 1, помещенными внутри дугогасительной камеры 2, располагается решетка из стальных пластин 3. При размыкании контактов образовавшаяся между ними дуга потоком воздуха выдувается вверх, попадает в зону металлической решетки и быстро гасится.

Рис. 2. Устройство дугогасительной камеры автоматического выключателя: 1- контакты, 2- корпус дугогасительной камеры, 3 — пластины.

Схема и основные элементы автоматического выключателя представлены на рисунке 3.

Рис. 3. Устройство автоматического выключателя: 1 — максимальный расцепитель, минимальный расцепитель, независимый расцепитель, 4 — механическая связь с расцепителем, 5- рукоятка ручного включения, 6- электромагнитный привод, 7,8- рычаги механизма свободного расцепления, 9- отключающая пружина, 10- дугогасительная камера, 11- неподвижный контакт, 12- подвижный контакт, 13- защищаемая цепь, 14- гибкая связь, 15- контактный рычагу, 16- тепловой расцепитель, 17- добавочное сопротивление, 18- нагреватель.

Механизм управления предназначен для обеспечения ручного включения и выключения аппарата при помощи кнопок или рукоятки.

Устройство автоматического выключателя

Коммутирующее устройство автоматического выключателя состоит из подвижных и неподвижных контактов (силовых и вспомогательных). Пара контактов (подвижный и неподвижный) образуют полюс автоматического выключателя, количество полюсов бывает от 1 до 4. Каждый полюс комплектуется отдельной дугогасительной камерой.

Механизм, который отключает автоматический выключатель при аварийных режимах, называется расцепителем. Различают следующие виды расцепителей:

— электромагнитный максимального тока (для защиты электроустановок от токов короткого замыкания),

— тепловой (для защиты от перегрузок),

— комбинированный, имеющий электромагнитный и тепловой элементы,

— минимального напряжения (для защиты от недопустимого снижения напряжения),

— независимый (для дистанционного управления автоматическим выключателем),

— специальный (для реализации сложных алгоритмов защиты).

Устройство автоматического выключателя

Электромагнитный расцепитель автоматического выключателя представляет собой небольшую катушку с обмоткой из медного изолированного провода и сердечником. Обмотка включается в цепь последовательно с контактами, то есть по ней проходит ток нагрузки.

В случае возникновения короткого замыкания ток в цепи резко возрастает, в результате создаваемое катушкой магнитное поле вызывает перемещение сердечника (втягивание в катушку или выталкивание из неё). Сердечник при перемещении действует на отключающий механизм, который вызывает размыкание силовых контактов автоматического выключателя. Существуют автоматические выключатели с полупроводниковыми расцепителями, реагирующими на максимальный ток.

Тепловой расцепитель автоматического выкючателя представляет собой биметаллическую пластину, изготовленную из двух металлов с различными коэффициентами линейного расширения, жестко соединенных между собой. Пластина не является сплавом металлов, их соединение производится обычно прессованием. Биметаллическая пластина включается в электрическую цепь последовательно с нагрузкой и нагревается электрическим током.

В результате нагрева происходит изгибание пластины в сторону металла с меньшим коэффициентом линейного расширения. В случае возникновения перегрузки, то есть при небольшом (в несколько раз) увеличении тока в цепи по сравнению с номинальным, биметаллическая пластина, изгибаясь, вызывает отключение автоматического выключателя.

Время срабатывания теплового расцепителя автоматического выключателя зависит не только от величины тока, но и от температуры окружающей среды, поэтому в ряде конструкций предусмотрена температурная компенсация, которая обеспечивает корректировку времени срабатывания в соответствии с температурой воздуха.

Независимый расцепитель минимального напряжения по конструкции аналогичны электромагнитному и отличаются от него условиями срабатывания. В частности, независимый расцепитель обеспечивает отключение автомата при подаче напряжения на расцепитель независимо от наличия аварийных режимов.

Указанные расцепители являются дополнительными и могут отсутствовать в конструкции автоматического выключателя. Имеются также выключатели без каких-либо расцепителей, в этом случае они называются в ыключателями- разъединителями.

В настоящее время распространены автоматические выключатели типов АП50Б. АЕ10, АЕ20, АЕ20М, ВА04-36, ВА-47, ВА-51, ВА-201, ВА88 и др. Автоматические выключатели АП50Б выпускают на номинальные токи до 63А, АЕ20, АЕ20М – до 160А, ВА-47 и ВА-201 – до 100А, ВА04-36 – до 400 А, ВА88 – до 1600А.

Статьи и схемы

Полезное для электрика

Автоматические выключатели

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения. В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока. Его схема показана ниже:

Где: 1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока. В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

Где: 1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального, пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки. Принципиальная электрическая схема автомата показана ниже:

Где: 1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео подробно описывающее работу автоматического выключателя:

Post navigation

Устройство автоматического выключателя: конструкция, принцип работы

Автоматический выключатель – это защитное устройство, предохраняющее электропроводку потребителя от действия коротких замыканий и перегрузок. Используется он и для нечастых включений или отключений нагрузки.

Автомат пришел на смену предохранителям с плавкими вставками однократного действия. Их защитное действие заключалось в перегорании плавкой вставки после короткого замыкания. После устранения замыкания вставку приходилось менять. Если причина замыкания не была обнаружена, вставка перегорала вновь. В этом – неудобство предохранителей. Второй их недостаток – отсутствие защиты от перегрузок по току.

Автоматические выключатели имеют коммутационный ресурс, но он исчисляется сотнями тысяч включений. Производителями выпускаются автоматы различных видов и назначения, но мы рассмотрим бытовую серию этих изделий. Это – модульные автоматические выключатели. Они имеют компактные размеры, устанавливаются на DIN-рейку и позволяют подключить провода и кабели сечением 16-25 мм 2 .

Устройство автоматического выключателя: модульная конструкция

Слово «модульный » означает, что все элементы электрооборудования собираются из модулей стандартного размера. Ширина одного модуля – около 17 мм. Такую ширину имеет один полюс автоматического выключателя, рубильника, реле и других элементов, из которых собирается электрическая схема распределительного щитка.

Рассмотрим конструкцию одного полюса автоматического выключателя. Для изготовления корпуса используется материал, не поддерживающий горение, с высокой температурой плавления и стойкостью к действию электрической дуги.

Устройство автоматического выключателя: конструкция модульного автоматического выключателя

Внутри корпуса размещены подвижный и неподвижный контакты выключателя. При повороте рычага управления через механизм взвода и расцепления они соединяются и пропускают ток нагрузки. Для подключения проводов служат клеммы. Ток через выключатель идет по цепи:

верхняя клемма — неподвижный контакт – подвижный контакт – гибкий поводок – катушка электромагнитного расцепителя – нагревательный элемент теплового расцепителя – нижняя клемма.

При возникновении короткого замыкания срабатывает катушка электромагнитного расцепителя и штоком выбивает защелку механизма расцепления. Контакты размыкаются под действием пружины. При отключении между ними возникает дуга, и в месте ее возникновения резко повышается давление. Автомат устроен так, что место возникновения дуги связано с окружающим пространством только через канал для отвода газов и дугогасительную камеру. Поэтому дугу между контактами вытягивает в камеру, где она дробится о металлические пластинки и гаснет.

Некоторые производители для лучшего гашения дуги устанавливают два контакта, соединенных последовательно.

При перегрузке ток, проходя по нагревательному элементу. заставляет изгибаться биметаллическую пластину. С выдержкой времени, зависящей от кратности тока перегрузки по отношению к номинальному току автомата, пластина вызывает срабатывание механизма свободного расцепления.

Трехполюсный выключатель получается из трех одинаковых корпусов, собранных вместе. Их рычаги управления объединяются, а между корпусами устанавливаются тяги, расцепляющие механизмы соседних фаз при срабатывании защиты.

Модульные автоматические выключатели выпускаются на номинальный ток от 0,5 до 125 А. При выборе их также учитывается характеристика электромагнитного расцепителя: С или D.

Оцените качество статьи. Нам важно ваше мнение:

Источники: http://electricalschool.info/spravochnik/apparaty/770-ustrojjstvo-avtomaticheskogo.html, http://elenergi.ru/avtomaticheskie-vyklyuchateli.html, http://electric-tolk.ru/ustrojstvo-avtomaticheskogo-vyklyuchatelya/

electricremont.ru

устройство и принцип действия автомата, схемы с нужным автоматическим аппаратом

Двухполюсный выключатель предназначен для контроля и сравнения работы двух участков одной электрической сети. В случае короткого замыкания, как и других неисправностей на любом участке, происходит автоматическое отключение обеих линий. Его работу можно сравнивать с действием двух однополюсных автоматов. Но дело в том, что схема защиты и блокировки автомата рассчитана на сравнение параметров каждого устройства в отдельности, поэтому заменять их однополюсными выключателями нельзя.

Устройство аппарата

Обычный автомат защищает и может отключить только одну линию. Его конструкция и построена на этом условии. Агрегат, обслуживающий две линии, обладает дополнительными элементами, которые позволяют отключить ноль и фазу одновременно в двух цепях. Вот для чего и нужен двухполюсный автомат.

Обычно его устанавливают в однофазную сеть 220 В, а для защиты электрических линий с трехфазным напряжением применяют автоматы трехполюсные и четырехполюсные. Важными элементами защиты в 2-полюсном автомате являются:

  • электромагнитный механизм;
  • тепловой расцепитель.

Электромагнитный механизм защиты

Элементы конструкции этой защиты срабатывают в момент появления короткого замыкания в одной из линий. В то же время в цепи возникают токи большой величины, которые могут превышать допустимое значение в несколько тысяч раз.

Чтобы не сгорели кабеля и бытовая аппаратура, механизм защиты срабатывает в доли секунды и разрывает подающую сеть. Обычно на каждом приборе установлено обозначение времени срабатывания.

Маркировка наносится на корпус автомата в виде букв латинского алфавита, каждая из которых соответствует определенному времени срабатывания. Конструкция механизма состоит из сердечника (соленоида), который связан с подвижным контактом.

Соленоид располагается внутри пружины, которая последовательно соединяет тепловой расцепитель с силовыми контактами. Величина рабочего тока слишком мала, чтобы магнитный поток смог втянуть сердечник.

Когда же сила тока резко увеличивается, то катушка втягивает соленоид, сжимая пружину, и он разъединяет контакты. В нормальном состоянии пружина разжимается, и контакты опять соединяются.

Тепловой расцепитель

Отличительной чертой этого защитного механизма является то, что он срабатывает гораздо медленнее, чем электромагнитный. Он некоторое время способен выдерживать максимальную нагрузку, и если она не упадет до рабочего значения, то отключит контакты. Кстати, этот механизм никак не реагирует на кратковременное изменение силы тока.

В конструкцию расцепителя входят:

  • биметаллическая пластина;
  • рычаг расцепительного механизма;
  • контакты.

При нормальном значении силы тока свободная часть пластины находится рядом с рычагом, отключающего механизм. При увеличении нагрузки пластина начнет нагреваться и изгибаться. При этом она начинает воздействовать на рычаг, а тот, в свою очередь, действует на контакты и размыкает их.

Схемы подключения

Схема и установка аппарата напрямую зависит от наличия заземляющего контура. Если в дом входят только два провода (ноль и фаза) напряжением 220 В, то в главный щит можно ставить однополюсные автоматические выключатели. При этом фазу подключают к самому автомату.

Если же присутствует и третий входящий провод (заземление), то обязательно ставят двухполюсный аппарат. К выключателю непосредственно подключают ноль и фазу, а провод заземления через коробку с клеммами разводят по квартирам. Затем оба провода от автомата подключают к электросчетчику и однополюсным автоматам, которые распределены по группам управления.

В случае обустройства трехфазной сети, если заземление отсутствует, устанавливают трехполюсный выключатель. При этом к защитному аппарату подключают провода трех фаз, а ноль разводят до потребителей отдельным контуром.

Если присутствует в схеме заземляющий провод, то на вводе устанавливают четырехполюсный аппарат, к которому подсоединяют три фазы и ноль, а заземление разводят отдельной линией по приборам.

Популярные модели

В настоящее время существует большой выбор двухполюсных выключателей. Особой популярностью пользуется продукция шведско-швейцарской компании ABB. К популярным относятся следующие модели:

  1. 2П 32A ABB SH 202LC32 — автоматический выключатель, предназначенный для использования внутри домов и квартир. Благодаря упрощенной конструкции обладает невысокой ценой. Существует возможность подключение питания как к верхним контактам, так и к нижним.
  2. 2П 06А АВВ Sh302LC6 — аппарат, обладающий уменьшенной высотой модуля, что гораздо облегчает его монтаж. Установка выключателя производится вручную, без применения отвертки. Рассчитан он на номинальный ток — 6А.
  3. 32А Legrand TX3 — автомат, выпущен польскими производителями и характеризуется отличными качествами. Аппарат используется при номинальной силе тока равной 32А. Такие приборы используются как в административных зданиях, так и в жилых домах.

А также хорошо известен бренд IEK от российских производителей, который занимает ведущее место в категории «Электротехника».

Достоинства и недостатки автоматов

У этих выключателей существуют некоторые недостатки в эксплуатации. Хотя их немного, но на них следует обратить внимание. При коротком замыкании обеих линий возможен пробой и выход из строя двухполюсного автомата.

При неисправности одной из цепей аппарат иногда может не включиться. Возможен выход из строя теплового расцепителя, хотя вся электрическая сеть будет исправно работать. В отличие от однополюсных, двухполюсные автоматы чаще подвергаются механическим повреждениям.

Но все же несмотря на наличие этих минусов, автоматы пользуются популярностью, особенно в квартирах, где установлены на одной линии мощные бытовые приборы. Например, они обеспечивают безопасную работу в одной цепи стиральной машины и посудомоечного агрегата.

Если установить трехполюсный выключатель, то допускается подключение на одну линию духового шкафа. Лучше всего перед их установкой распределить подключение сложных приборов равномерно. Такой вариант обеспечит длительную и безопасную работу двухполюсных выключателей и всей электрической схемы.

220v.guru

СХЕМА АВТОМАТА ВКЛЮЧЕНИЯ ОСВЕЩЕНИЯ

   В данной статье рассматривается автомат лестничного освещения, срабатывающий при звуке шагов, хлопке закрываемой двери и других достаточно громких звуках и автоматически включающий свет на лестничной площадке, в арке или где-нибудь в подсобном помещении. После прекращения звуков производится выдержка времени (примерно 1,5 мин), после чего освещение выключается. Как показал опыт повторения конструкции, автомат не только не обеспечивает указанной задержки, но и вообще никак не реагирует на звуковые сигналы. Первое, что обратило на себя внимание при анализе схемы, —отсутствие начального смещения электретного микрофона, a ведь ему нужно питание. Ошибку удалось исправить включением резистора сопротивлением 22 кОм между верхним по схеме выводом микрофона и плюсовой шиной источника питания. B результате, выходной сигнал c выхода микрофона появился, но амплитуда сигнала на выходе первого усилительного каскада по прежнему оказалась равной нулю. B чем же причина? Оказывается, нарушен режим работы транзистора VT1 по постоянному току: слишком большой ток утечки оксидного конденсатора С2 при неправильной полярности включения приводит к насыщению и полному открыванию указанного транзистора. Заменяем конденсатор С2 неполярным емкостью 0,1 мкФ. Теперь транзистор VT1 работает в активном режиме, но автомат начинает срабатывать только от очень громких звуков и на расстоянии не более 1 м. 

   Кроме того, постоянная времени цепи C4-R6-R7 составляет всего лишь 30 мс, a не 1,5 мин, как сказано в статье (в 3000 раз меньше!). Поэтому получился не автомат лестничного освещения, a своего рода "цветомузыкальный автомат", когда лампа на короткое время вспыхивает в такт возникающим звукам. Чтобы получить сколько-нибудь приемлемую задержку свечения лампы после исчезновения звукового сигнала, для конденсатора 04 не-обходима разрядная цепь c очень большим входным сопротивлением, a не 330 Ом, как сопротивление резистора R7 в Базовой цепи ключевого транзистора VTЗ. Но при увеличении R7 VT3 никогда не откроется, поскольку требует относительно большого базового тока. Повысить чувствительность автомата можно только введением дополнительного усилительного каскада, чтобы "раскачать" слабый сигнал микрофона. Предлагаю исправленный, a главное, действующий вариант автомата лестничного освещения который обладает высокой чувствительностью и обеспечивает максимальную задержку выключения лампы несколько минут. 

Схема электрическая автомата включения освещения



   Автомат питается непосредственно от осветительной сети и не требует применения дополнительных стабилизаторов. Работает он следующим образом. При появлении звукового сигнала переменное напряжение амплитудой несколько милливольт c выхода микрофона M1 через разделительный конденсатор C1 поступает на двухкаскадный усилитель на транзисторах VT1 и VT2 и после усиления до напряжения 6...7 B через разделительный конденсатор С4 подается на входы триггера Шмитта DD1.1, который формирует на выходе прямоугольные импульсы положительной полярности. Каждый такой импульс открывает эмиттерный повторитель VT3, усиливающий сигнал по току, и быстро заряжает конденсатор С5. На входах элемента DD1.2 формируется уровень логической "1", который, инвертируясь элементом DD1.2, закрывает ключе-вой транзистор VT4 и формирует на его коллекторе высокий уровень ("1"), разрешающий работу схемы управления тиристором VS1. Для коммутации нагрузки (лампы накаливания) используется узел, описанный в [1], который реализует наиболее экономичное импульсное управление тиристором в моменты перехода сетевого напряжения через ноль. На элементах DD1.3 и DD1.4 выполнен компаратор, срабатывающий при каждой полуволне сетевого напряжения в момент, когда ее значение достигает порога переключения элемента DD1.3. При этом на выходе элемента DD1.4 формируются положительные импульсы, равные по длительности времени открывания тиристора VS1. Каждый такой импульс открывает транзистор VT5, подающий положительный импульс на управляющий электрод VS1. В результате тиристор также открывается и подключает лампу последовательно с диодным мостом. Но после этого напряжение на тиристоре уменьшается до 1...1,5 B, что приводит компаратор (DD1.3, 0D1.4) в исходное состояние и закрывает транзистор VT5. Тиристoр же остается в открытом состоянии до тех пор, пока сетевое напряжение не перейдет через "ноль". Затем начинается вторая полуволна сетевого напряжения, и описанный процесс повторяется. Ток протекает через транзистор VT5 только в течение времени, необходимого для открывания тиристора(несколько десятков микросекунд). Таким образом, тиристор открывается коротким импульсом тока в начале каждой полуволны сетевого напряжения. Это и обеспечивает устройству надежное срабатывание и экономичность. После исчезновения звукового сигнала конденсатор C5 постепенно разряжается, и когда напряжение на нем снижается до порога переключения элемента DD1.2, напряжение на коллекторе VT4 падает до нуля, и лампа гаснет. При появлении новых звуковых сигналов транзистор VT3 подзаряжает конденсатор С5, и время выдержки продлевается. Время задержки выключения лампы определяется емкостью конденсатора C5 и сопротивлением введенной части подстроечного резистора R9. Оно может изменяться в пределах от 1 c до 2 мин. Автомат собран на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм, вырезанной из квадратной заготовки размерами 78x78 мм. 

Печатная плата автомата освещения:

   Для установки в стандартную пластмассовую сетевую разветвительную коробку типа КЭМ5-10-7 в заготовке вырезаются уголки размерами 13х13 мм.

   B автомате применены постоянные резисторы типа МЛТ-0,125, МЛТ-0,5 (R15), МЛТ-2 (R18), подстроечный —СП3-38б, электролитические конденсаторы — типа К50-35, неполярные — К10-17. Микрофон может быть типа CZN-15E, МКЭ-332, МКЭ-333, МКЭ-389-1. На месте стабилитрона VD1 могут работать Д814В, Д810, Д81 , Д812, a также КС510, КС512. Диод VD2 — любой маломощный кремниевый из серий КД503, КД521, КД522. Он ограничивает напряжение, подводимое к входу элемента DD1.3 с делителя R13-R15, на уровне, чуть превышающем (на величину прямого напряжения V02) напряжение питания микросхемы. Диод VD3 — КД105Б(В, Г) или Д226Б(В) или КД209А(Б, B). Диоды моста VD4..VD7 могут быть КД226Г(Д, E) или другие c минимально допустимым током не менее 1 А и обратным напряжением не менее 400 B. Тиристор VS1 —КУ201 К(Л, M) при мощности нагрузки до 300 Вт, a также КУ202М(Н) при мощности нагрузки до 2 кВт Во втором случае диоды выпрямительного моста должны быть рассчитаны на ток не менее 10 А. Транзисторы VT1, \'Т2— КТ3102ЕМ или импортные 60547, но обязательно c статическим коэффициентом передачи тока не менее 400, VT3...VT5 — из серий КТ3102, КТ503 c любым буквенным индексом. Микросхема К561ТЛ1 (CD4093AN) заменима на КР1561ТЛ1 (CD4093BN). 

   Автомат в настройке практически не нуждается, за исключением установки желаемого времени задержки выключения лампы, после исчезновения звукового сигнала c помощью резистора R9. Для получения еще большей чувствительности в устройство устанавливают резистор R7 сопротивлением 2,2 МОм, показанный на схеме пунктиром. Если мощность лампы превышает 75 Вт, тиристор необходимо установить на теплоотводящий радиатор. Внимание! Элементы устройства имеют гальваническую связь c сетью, поэтому при работе c ним следует соблюдать требования техники безопасности! При настройке следует использовать отвертку c ручкой из изоляционного материала! Собрав такой автоматический включатель, вы сэкономите деньги на электроэнергии или вообще откажетесь от выключателей.

el-shema.ru

Обозначение автомата на электрической схеме

Условное обозначение узо на схеме

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы. но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Краткий обзор условных обозначений, используемых в электросхемах

28.10.2015 1 комменатрий 128 556 просмотров

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта Сам Электрик условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Нравится( 0 ) Не нравится( 0 )

Маркировка автоматического выключателя на схеме

Проведение электромонтажных работ предполагает наличие определенных знаний, чтобы выполнить безопасное подключение объекта к сети питания. Важным элементом любой электрической схемы является автоматический выключатель, задача которого – отключить питание в случае перегрузки системы или воздействия тока короткого замыкания. Получая актуальную информацию из чертежей, электрик «читает» обозначение каждого устройства.

Условное изображение автоматов

Чертежи разрабатывают согласно ГОСТ 2.702-2011, содержащего информацию о правилах выполнения электросхем. В качестве дополнительной нормативной документации используется ГОСТ 2.709-89 (провода и контакты), ГОСТ 2.721-74 (УГО в схемах общего применения), ГОСТ 2.755-87 (УГО в коммутационных приспособлениях и контактах).

Согласно государственным стандартам, автоматический выключатель (средство защиты) в однолинейной схеме электрического щита изображается следующей комбинацией:

  • прямая линия электроцепи;
  • разрыв линии;
  • боковое ответвление;
  • продолжение линии цепи;
  • на ответвлении – незакрашенный прямоугольник;
  • после разрыва – крестик.

Обозначения автоматические выключатели на схеме

Иное условное обозначение имеет автомат для защиты двигателя. Кроме графического, в схеме присутствует буквенное изображение. В зависимости от особенностей автомата электротехническое приспособление имеет несколько вариантов записи:

  1. QF – автоматический выключатель для силовых цепей, состоящих из элементов, функциональное назначение которых состоит в производстве, передаче, распределении, преобразовании электроэнергии.
  2. SF – автоматический выключатель для электрической цепи управления, назначение которой заключается в защите силовых цепей и управлении работой машин и оборудования.
  3. QFD – дифавтомат, автоматический выключатель с дифференциальной защитой, часто используемый для обеспечения повышенной безопасности при постоянной эксплуатации электроприборов, сочетает функции УЗО и автомата.

При разработке схемы электрической цепи учитывается степень вероятной нагрузки приборов и оборудования на линию, и в зависимости от мощности приборов можно устанавливать один выключатель или несколько автоматов.

Селективное подключение средств защиты

Если предполагается высокая нагрузка в сети, применяют метод последовательного подключения нескольких устройств защиты. К примеру, для цепи из четырех автоматов с номинальным током по 10 А и одним вводным прибором на схеме каждый автомат с дифзащитой графически обозначается последовательно друг за другом с выходом устройства на общий вводный прибор. Что это дает на практике:

  • соблюдение метода селективности подключения;
  • отключение от сети только аварийного участка цепи;
  • неаварийные линии продолжают функционировать.

Таким образом, обесточивается только один из четырех приборов – тот, на который пошла перегрузка напряжения или возникло короткое замыкание. Важное условие селективного срабатывания: чтобы номинальный ток потребителя (светильника, бытового прибора, электротехнического устройства, оборудования) был меньше номинального тока автомата со стороны питания. Благодаря последовательному подключению средств защиты, удается избежать возгорания проводки, полного обесточивания системы питания и оплавления проводов.

Классификация приборов

Механизм автоматического выключателя

Согласно составленной схеме выбирают электротехнические устройства. Они должны отвечать техническим требованиям, предъявляемым к конкретному типу изделий. Согласно ГОСТ Р 50030.2-99, все автоматические средства защиты классифицируют по типу исполнения, среде использования и обслуживанию на несколько разновидностей. При этом единый стандарт ссылается на использование ГОСТ Р 50030.2-99 совместно с МЭК 60947-1. ГОСТ применим для коммутации цепей с напряжением до 1000 В переменного и 1500 В постоянного тока. Автоматические выключатели классифицируют на следующие виды:

  • со встроенными плавкими предохранителями;
  • токоограничивающие;
  • стационарного, втычного и выдвижного исполнения;
  • воздушный, вакуумный, газовый;
  • в пластмассовом корпусе, в оболочке, открытого исполнения;
  • аварийный выключатель;
  • с блокировкой;
  • с расцепителями токов;
  • обслуживаемый и необслуживаемый;
  • с зависимым и независимым ручным управлением;
  • с зависимым и независимым управлением от источника питания;
  • выключатель с накопителем энергии.

Кроме того, автоматы различаются по числу полюсов, роду тока, числу фаз и номинальной частоте. Выбирая конкретный тип электротехнического устройства, необходимо изучить характеристики автомата и проверить соответствие прибора схеме электрической цепи.

Маркировка на приборе

Маркировка на приборе

Техническая документация обязывает производителей автоматических устройств указывать полную маркировку изделий на корпусе. Основные обозначения, которые должны присутствовать на автомате:

  • торговая марка – производитель устройства;
  • наименование и серия приспособления;
  • номинальное напряжение и частота;
  • значение номинального тока;
  • номинальный дифференциальный ток отключения;
  • УГО автоматического выключателя;
  • номинальный дифференциальный ток короткого замыкания;
  • обозначение маркировки контактов;
  • диапазон рабочих температур;
  • маркировка включенного/отключенного положения;
  • необходимость ежемесячного тестирования;
  • графическое обозначение типа УЗО.

Информация, указанная на автомате, позволяет разобраться, подходит ли электротехническое устройство к конкретной цепи, обозначенной на схеме. Отталкиваясь от маркировки, чертежа и расчета потребляемой мощности, можно грамотно организовать подключение объекта к электропитанию.

Источники: http://electricvdome.ru/uzo/oboznachenie-uzo-na-sxeme.html, http://samelectrik.ru/kratkij-obzor-uslovnyx-oboznachenij-ispolzuemyx-v-elektrosxemax.html, http://energomir.biz/elektrichestvo/elektrooborudovanie/oboznachenie-avtomaticheskogo-vyklyuchatelya.html

electricremont.ru

About the author

Отправить ответ

avatar
  Подписаться  
Уведомление о