виды, маркировка, габариты и применение
Бетон / Изделия / Изделия для зданий и архитектуры /
Содержание
- 1 Определение
- 2 Назначение
- 3 Виды
- 3.1 Таврового сечения
- 3.2 Прямоугольного сечения
- 4 Маркировка
- 5 Габариты
- 6 Область применения
- 7 Заключение
Прочность строительных конструкций помогают обеспечить железобетонные изделия. Их формы, размеры разнообразны. Одни производят прямо на строительной площадке, другие подготавливают на производстве. Ни одно строительство не обходится без железобетонных прогонов.
Определение
Внешний вид, структура прогона почти не отличается от железобетонного столба. Внешне они выглядят, как застывший бетонный раствор с металлическим каркасом внутри. В чем отличие прогонов? Отличаются конструкции большой массой, длинной и усиленной прочностью. Производство конструкций не поставлено на поток, их выпуск связан с необходимостью элемента выдерживать определенную нагрузку.
Вернуться к оглавлению
Назначение
Прогоны железобетонные применяются в строительстве с целью решения важной задачи. К примеру, ни одни проем нельзя сделать без применения прогона. Только после его установки крепятся плиты перекрытий. А армированные изделия, выполненные под воздействием термической обработки, выдерживают большие нагрузки. Применяются в строительстве общественных, промышленных зданий с кирпичными и железобетонными стенами. Чаще всего используются в сооружении проемов, опор на которые крепятся плиты перекрытий.
Установка прогона: а) вид опоры на стене; б) на столбе; 1. железобетонная подушка; 2. прогоны.Железобетонные прогоны подготавливают исключительно промышленным способом, согласно государственным нормам строительства. Для их производства используют только тяжелый бетон, чаще М200 и М300, с применением арматуры для армирования. Использование конструкций в благоприятных условиях увеличивает срок службы зданий.
Вернуться к оглавлению
Виды
Железобетонный прогон подразделяют на виды, которые формируются согласно форме изделия и марки бетона. Прогонам присвоены следующие типы
Вернуться к оглавлению
Таврового сечения
При производстве используются швелера и двутавры. Подразделяется данный тип на два вида:
- В первую группу входят изделия с расположенным перпендикулярно ребру прогона металлом. Они подходят при строительстве зданий, которые имеют примерно 25% наклона кровли. 1ПР стержневой каркас, 2ПР предварительно создано напряжение, 3ПР используется при уклоне кровли не более 5% – разновидности первой группы.
- Во вторую группу включены изделия, выдерживающие угол наклона крыши 25%. В нее входят изделия 4ПР напряженная и 5ПР искусственно созданным напряжением.
Данные конструкции могут использоваться для неотапливаемого помещения. Применяются в температурном режиме от – 40 до 50 градусов и воздействии газа. Характерной особенностью является возможность применять изделия при строительстве сооружений в опасных, сейсмически активных зонах.
Отличием является наличие специальных отверстий, продевая в которые захватные устройства, облегчается подъем и монтаж элементов. Элементы с тавровым сечение подходят для строительства зданий:
- неотапливаемые с кровлей из примеси цемента и асбестовых волокон;
- отапливаемые с облегченными перекрытиями;
- отапливаемые с цементной кровлей.
Вернуться к оглавлению
Прямоугольного сечения
Данный вид прогона имеет двутавровое разделение. Прямоугольное сечение прогонов может быть сплошным и решетчатым. Решетчатый вид легче, шаг размещения изделий 6 метров, поэтому его используют в строительстве гораздо чаще. Для производства сплошного вида применяют гнутые швелера. Изделия с прямоугольным сечением имеют тонкие стенки, но отличную высоту. Прочность изделиям обеспечивают специально созданные крепления отгибы.
Вернуться к оглавлению
Маркировка
Пример маркировки прогонов.К изготовлению строительных конструкций подходят с соблюдением государственных стандартов и технологий. Получить максимальную информацию о продукции можно, изучив серию товара. Неопытный строитель не сможет получить полную информацию по маркировке без знаний. Стоит ориентироваться на данные расшифровок.
Для удобства в использовании применяется специальная классификация буквами и цифрами. В них зашифрована информация о длине, высоте, ширине, опорной нагрузке. В первых буквах зашифрована информация о серии прогона:
- П – цельное изделие.
- ПР – наличие бортика, расположенного параллельно или под углом к оси элемента.
- ПРГ – прямоугольное сечение.
Вторая группа знаков содержит в себе информацию о нагрузке и типе арматуры. Третьи знаки говорят о специфическом назначении материала, включая особенности использования бетонного состава.
Например: ПРГ 28-1-3-4т. ПРГ – прямоугольное сечение. Следующая серия цифр обозначает размеры конструкции: 2800 длинна в мм, 100 мм ширина, 300 мм высота. В показателе 4т указана возможность выдерживать нагрузку в 4 тонны на один метр.
Вернуться к оглавлению
Габариты
Прогоны железобетонные характеризуются определенными размерами. Специальные цифры заложены в следующем диапазоне (мм):
- высота до 2780;
- ширина не более 400;
- длинна до 500;
- вес от 150 кг до 1,5 т.
Вернуться к оглавлению
Область применения
Широкое применение прогоны обрели в области строительства административных зданий, промышленного строительства и жилых комплексов. Технические данные прогонов выбираются, согласно особенностям монтажа и дальнейших условий эксплуатации. Все данные тщательно фиксируются в расчетной документации.
Область применения широка:
- основание для плит перекрытия;
- в качестве упора;
- усиление опор, укрепление строительной конструкции;
- основное связующее между зданиями в административных комплексах.
Один строитель не справится с монтажной работой. Потребуется привлечение нескольких специалистов и техники.
Вернуться к оглавлению
Заключение
Железобетонные прогоны – ключевой момент в строительстве проемов, укреплений зданий. Они гарантируют прочность, надежность зданиям, независимо от дальнейшей эксплуатации. А при строительстве, где нет возможности ставить дополнительные опоры, применение прогонов – единственный надежный вариант.
Профессиональные мастера разбираются в маркировке и знают способы применения. Главное, чтобы при производстве не нарушалась технология и использовались качественные материалы.
ПРГ 24-1,4-4 по стандарту:
увеличить изображение
Прогоны железобетонные прямоугольного сечения ПРГ 24-1,4-4 широко применяют в строительной сфере. Благодаря сочетанию высококачественных материалов, как портландцементы и углеродистая сталь, готовые железобетоны отвечают самым высоким требованиям по прочности и надежности. Это долговечные конструкции, которые могут быть применены в самых жестких условиях. Прогоны железобетонные ПРГ 24-1,4-4 – прямоугольные балки, которые применяют при обустройстве стенных проемов или арок в зданиях различного назначения. Прогонные балки – унифицированные изделия горизонтального направления, которые позволяют получить прочные конструкции с повышенными эксплуатационными характеристиками.
1.Варианты написания маркировки.
Данные железобетонные прогоны ПРГ 24-1,4-4 маркируют согласно действующему Стандарту –
1. ПРГ 24-1,4-4 т;
2. ПРГ 24-1-4-4 т.
2.Основная сфера применения прогонных изделий.
Прогоны прямоугольного сечения ПРГ 24-1,4-4 применяют в строительстве несущих каркасов – балки, фермы различного назначения. Это однопролетные балки, которые свободно опираются на балки и образуют единую жесткую конструкцию. Прогон может быть использован при строительстве блочных или кирпичных домов, как для гражданского, так и для общественного строительства.
ПРГ 24-1,4-4 представляет собой четырехугольное горизонтальное балочное изделие, основной функцией которого является укрепление конструкции здания или технического строения. За счет высокой прочности балка воспринимает значительные нагрузки и передает их на нижерасположенные элементы.
В здании прогоны воспринимают также статические и динамические нагрузки, работают при существенном изгибающем моменте, а также под действием сжимающих и сдавливающих деформаций. Это обуславливает применение прогонов как надежных железобетонных элементов с единовременной нагрузкой до 4000 кг*с/м2, поэтому их можно использовать для строительства несущих конструкций в ответственных узлах строения. Также прогонные изделия могут быть использованы при обустройстве ниш дома, перекрытии оконных и дверных проемов.Эксплуатация ПРГ 24-1,4-4 производится в условиях агрессивной среды, в зданиях с отоплением и без, поэтому и к материалам, их которых изготавливают прогоны, предъявляют достаточно жесткие требования. Железобетонный ПРГ прямоугольного сечения создается с запасом высокой прочности и гарантированной надежности для длительной эксплуатации.
3.Обозначение маркировки изделия.
В условное обозначение ПРГ 24-1,4-4 входит согласно Серии 1. 225-2 буквенная и цифровая комбинации – тип изделия и его размерные характеристики.
1. ПРГ – прогон прямоугольного сечения;
2. 24 – длина изделия с округлением, в дц.;
3. 1,4 – ширина и высота прогона соответственно, в дц.;
4. 4 – несущая способность, в т.
Дополнительно могут быть указаны следующие характеристики:
1. Класс армирования, напрягаемая арматура – АтV/AIII;2. 2400х120х400 – длина, ширина и высота изделия;
3. Геометрический объем – 0,1152;
4. Объем бетона на одно изделие – 0,12;
5. Масса прогона составляет 300;
Маркировочные знаки, дата изготовления и товарный знак производителя должны располагаться на торце или в конце ребра каждого прогона в партии. Наносят обозначение специальной краской.
4.Основные материалы для изготовления и их характеристики.
Балочные прогоны ПРГ 24-1,4-4 изготавливают по технологии формования из тяжелых бетонов. Марка по прочности на сжатие бетона соответствует пределам М350, класс прочности – В30. Предъявляют требования и по огнестойкости изделия – это несгораемые изделия со временем по стойкости к действию огня до 1,25 часа. Так как эксплуатация производится в достаточно агрессивных условиях, то устанавливается марка морозостойкости – F100, водонепроницаемость класса – W4.
Обеспечение необходимой жесткости прогона ПРГ 24-1,4-4 производится за счет армирования прутками из углеродистой стали класса А-III, Aт-V и упрочненной арматуры Ат-IV, из которых сваривают сетку С1. Арматурный каркас – тип КР5. В качестве закладных деталей используют изделия – тип МН3 и МН5 по 24 шт. каждых. Все эти закладные элементы прогона ПРГ предварительно обрабатываются антикоррозионными составами.
5.Транспортировка и складирование.
Перевозка и погрузка прямоугольных прогонов ПРГ 24-1,4-4 осуществляется по правилам техники безопасности спецтранспортом с надежной фиксацией всех элементов, прокладывая послойно блок деревянными подкладками. Все это позволяет сохранить все изделия от механического повреждения. Хранение производится в горизонтальном положении в штабелях, высота которых не превышает 2,5 метра.
Уважаемые покупатели! Сайт носит информационный характер. Указанные на сайте информация не являются публичной офертой (ст.435 ГК РФ). Стоимость и наличие товара просьба уточнять в офисе продаж или по телефону 8 (800) 500-22-52
Самостоятельная конструкция
Железобетон может показаться серым и обыденным, но он заслуживает признания! Это одно из тех маленьких чудес, которые имеют основополагающее значение для современной жизни и часто упускают из виду. Без него горизонты наших городов были бы ничем не примечательны. Вся наша городская среда была бы более плоской, движение по шоссе шло бы медленнее, а мосты были бы короче. Без подземных железобетонных труб у нас не было бы свободного доступа к чистой питьевой воде, безопасной и своевременной утилизации ливневых или сточных вод.
Когда появился бетон?
Бетон существует уже тысячи лет. Египтяне использовали его примитивную форму при строительстве пирамид. В 300 г. до н.э. римляне использовали более совершенный бетон в своих зданиях, некоторые из которых стоят до сих пор. Римляне даже научились делать бетон, который затвердевает под водой, и использовали его при строительстве виадуков и других сооружений. Портландцемент был разработан в 19 веке и сегодня используется как один из трех основных ингредиентов бетона (двумя другими являются вода и песок или аналогичный заполнитель).
Железобетон открывает эру небоскребов
Изобретение железобетона произошло во Франции в середине 19 века. Он быстро стал предпочтительным строительным материалом, и вскоре его начали использовать и американские инженеры. Примерно в 1903 году в Цинциннати был построен небоскреб с использованием новомодного метода армирования бетона витыми стальными стержнями. Это считалось смелым, почти безрассудным инженерным подвигом. Несмотря на это, 16-этажное здание Ingalls Building используется до сих пор, что свидетельствует о прочности железобетона.
Бетон также появляется под улицами
В 1910 году виадук, построенный Делавэрской, Лакаванной и Западной железной дорогой, стал самым большим железобетонным сооружением в мире. Виадук Паулинскилл высотой 1100 футов стоит до сих пор. Прямо сейчас есть планы восстановить сообщение для пассажиров между озером Хопатконг и Андовером, штат Нью-Джерси, с виадуком в качестве функции.
Под землей тоже что-то происходило. Первая бетонная канализационная труба была проложена в 1842 году в городе Могавк, штат Нью-Йорк. Удивительно, но спустя 175 лет она все еще используется. Это заставляет задуматься, каковы будут общие затраты на жизненный цикл этой системы.
Что делает железобетон таким прочным?
На самом базовом уровне прочность бетона на сжатие в сочетании с прочностью на растяжение арматурной стали позволяет железобетону выдерживать нагрузки. Вместе эти материалы могут обеспечить впечатляющую интегральную прочность.
Чтобы понять, что это значит, начнем с железобетонных труб (ЖБК). Гибкая пластиковая и гофрированная металлическая труба выполняют функцию лайнера, по которому проходит жидкость. Общая прочность конструкции создается за счет материала оболочки, которая окружает гибкую трубу. Эта поддерживающая конструкция строится в полевых условиях. Напротив, труба RCP представляет собой самостоятельную конструкцию. Разница может показаться незначительной, но она имеет решающее значение.
Когда устанавливается труба, которая не является самостоятельным сооружением, в обязанности инженера входит выбор подходящего дренажного изделия, а монтажнику – сооружение вантовой конструкции – конструкционной оболочки трубопровода – и траншейный грунт для создания прочности всей установки. Инженеры должны тщательно оценить правильный вес грунта и принять меры, чтобы убедиться, что все соответствует руководствам по установке производителя.
При установке RCP материал заделки не является столь критичным, как в случае с гибкой трубой, такой как полиэтилен высокой плотности (HDPE), полипропилен (PP), поливинилхлорид (PVC) и гофрированный металл ( КМП). Фактически, RCP выдерживает до 90% как постоянных, так и временных нагрузок благодаря своей конструкции, изготовленной на заводе.
TLDR (слишком долго не читал): в случае с гибкой трубой большая часть прочности приходится на конструкционный материал основания, для изготовления которого требуется много ручного труда и дорогостоящие заполнители. Целых 90% установки зависит от конструкционной оболочки, установленной вокруг трубы, и от ее способности создавать противодействующее давление вокруг трубы, что позволяет ей выдерживать нагрузку. В случае трубы, являющейся конструкцией (например, железобетонной конструкции, такой как RCP), большая часть несущей способности системы находится в самой трубе.
Как это повлияет на стоимость строительства?
Если мы совершим ошибку, сравнивая стоимость трубного материала длины RCP со стоимостью трубного материала эквивалентной длины гибкой трубы (HDPE, PP, PVC или CMP), то окажется, что RCP более дорогой. Однако, если мы учтем фактическую стоимость установки, в том числе с использованием различных процедур установки и изготовления конструкционного материала ограждающей подстилки, то картина изменится. Добавьте к этому стоимость жизненного цикла, и станет еще понятнее.
Три конкретных вывода
• Изобретение железобетона изменило то, как мы создаем наши жилые и рабочие конструкции, строим наши дороги и мосты, транспортируем нашу чистую воду и очищаем наши сточные и ливневые стоки. Многие здания, мосты и виадуки, построенные более века назад, сохранились до наших дней. Бетонные трубы, проложенные много десятилетий назад, до сих пор несут нашу воду и сточные воды. Все эти конструкции являются памятниками прочности и долговечности технологии.
• В мире подземных гидротехнических сооружений система RCP зарекомендовала себя как прочный, надежный и долговечный вариант. Когда учтены все затраты, включая расчетный срок службы, это также экономичный выбор.
• В следующий раз, когда вы будете смотреть на небоскреб или проезжать бетонную эстакаду или мост, подумайте об инновациях, благодаря которым все это стало возможным. И когда вы открываете кран или спускаете воду в унитазе, подумайте о невидимой сети бетонных труб, которая позволяет нам воспринимать такие современные удобства как должное!
Бетон и железобетон. Объясните это.
Бетон и железобетон. Объясните это.Вы здесь: Домашняя страница > Материалы > Бетон и железобетон
- Дом
- Индекс А-Я
- Случайная статья
- Хронология
- Учебное пособие
- О нас
- Конфиденциальность и файлы cookie
Реклама
Стоунхендж в Англии, Великая пирамида в Гизе, перуанская цитадель в Мачу-Пикчу — три удивительных примера того, как камень структуры могут простоять сотни или даже тысячи лет. Но хотя камень – один из старейших и самых прочных строительных материалов, он не точно удобно работать. Он тяжелый, его трудно транспортировать, и обычно идет большими кусками, которые должны быть кропотливо вырезать по форме. Было бы здорово, если бы существовал рецепт камня — какая-то клейкая смесь для кекса, которую мы могли бы смешать, где бы это ни было необходимо, просто нажав на нее в формы для изготовления зданий и сооружений любой формы и размера?
Такой «жидкий камень» действительно существует: мы называем его бетон . Хотя иногда он получает плохую репутацию, потому что многие ассоциируется у людей с брутальной городской архитектурой середины 20-х гг. века, бетон — великий, невоспетый герой современного материала.
мир. От плотины Гувера до Сиднейского оперного театра вы найдете это в самых высоких небоскребах мира, самый большой мосты, самые длинные магистрали, глубочайшие туннели и, вполне вероятно, даже под полом в свой скромный маленький дом. Бетон — довольно удивительная вещь, но что это такое и как именно это работает? Давайте посмотрим поближе!Фото: Бетон — основа практически каждого современного здания и основная структура — но это не так уродливо, как многие думают. Это 12-арочный виадук Калсток, по которому проходит железная дорога через реку Тамар в Корнуолле, Англия. Хотя он выглядит так же элегантно, как старый камень, на самом деле он сделан из бетона. блоки, которые были собраны на месте и были завершены в 1908 году.
Содержание
- Что такое бетон?
- Почему бетон так популярен в строительстве?
- Железобетон
- Предварительно напряженный бетон
- «Бетонный рак»
- Воздействие бетона на окружающую среду
- Краткая история бетона
- Узнать больше
Что такое бетон?
Таблица: Рецепт бетона: Ингредиенты типичной смеси.
Слово «бетон» происходит от латинского слова concretus , смысл расти вместе — и это именно то, что происходит, когда вы объединить три его ингредиента, а именно:
- Смесь крупных и мелких заполнителей (песок, гравий, камни, более крупные куски щебня, переработанное стекло, кусочки старого переработанного бетона и многое другое. что-либо эквивалентное) — обычно 60–75 процентов.
- Цемент (обычное название силикатов и алюминатов кальция) — обычно 10–15 процентов.
- Вода — обычно 15–20 процентов.
Собранные вместе и хорошо перемешанные, эти простые ингредиенты составляют композит, так мы называем гибрид материал, который в каком-то важном отношении лучше, чем материалы из который он сделан. В случае с бетоном «важно» то, что он прочный, твердый и долговечный. Представление о бетоне как о композиционный материал, гидрат цемента является фоном, вяжущим материал (технически называемый «матрицей»), к которому добавляют песок и гравий дополнительная прочность («армирование»).
Фото: Бетонный композит: Посмотрите внимательно на этот бетон, и вы ясно увидите, как он работает: более светлый заполнитель (камни разных форм и размеров, которые служат армированием) связывается более темным цементом ( матрица). Однако не весь бетон выглядит таким грубым; Мне пришлось довольно долго рыскать, чтобы найти этот пример в бетонном столбе рядом с моим домом.
Как образуется бетон из ингредиентов, не похожих на конечный продукт? Когда вы добавляете воду в цемент, начинают расти кристаллы гидрата цемента (технически это гидрат кальция-кремнезема), которые плотно соединяют песок и гравий. это постепенно образование кристаллов, которое придает бетону прочность, а не простой факт, что он высыхает. Действительно, причина, по которой вы должны держать смачивание бетона в течение нескольких дней по мере его схватывания является «питанием» химические реакции, приводящие к гидратации цемента. Мягкая слякотная смесь, которая падает из вашего бетономешалка постепенно получается намного тверже, чем материалы из который он сформировал. «Жидкий камень» становится настоящим камнем — ну, хотя бы искусственный камень. И под «постепенно» я действительно имею в виду постепенно: бетон затвердевает в течение нескольких часов, затвердевает примерно через в месяц, но продолжает твердеть и укрепляться не менее пять лет после этого.
Интересный факт, из Недавние научные исследования бетона заключаются в том, что «кристаллы» внутри него на самом деле вовсе не кристаллы: они плохо упорядочены и совершенно правильные, какими и должны быть кристаллы, но на самом деле имеют некоторые из случайных структур, которые вы найдете в таких материалах, как стекло (научно известные как аморфные твердые тела). Бетон содержит достаточно немного захваченного воздуха (целых 5-10 процентов), потому что есть некоторое пространство вокруг открытой трехмерной структуры гидрата цемента кристаллы и песок и гравий, застрявшие между ними. И то, в очередь, объясняет, почему бетон может гнуться и изгибаться, растягиваться и сжиматься (все-таки немного).
Как и в любом рецепте, смесь для бетона можно несколько варьировать (подробнее воды, может быть, больше агрегатов, или даже химикатов разных виды) для производства бетона, который течет быстрее, твердеет или более быстро, лучше выдерживает погодные условия или имеет определенный цвет или внешний вид. Добавление пигмента, называемого диоксидом титана, например, является простым способ сделать бетон ярким и белым — в миллионе миль от унылое серое вещество, из-за которого у бетонных автостоянок дурная слава. Другой вариант – газобетон, внешне немного напоминающий очень твердый губка с массой крошечных воздушных карманов внутри. Это позволяет бетон расширяется и сжимается в жаркую и холодную погоду без фатально трескается, а также делает его отличной теплоизоляцией материал.
Фото: Когда бетон распыляется из шланга на высокой скорости, а не медленно укладывается из бетономешалка, это называется торкретбетон. Слева: как наносится Shocrete на каркас из арматуры. Фото предоставлено US NAVFAC и Wikimedia Commons. Справа: пример того, как набрызг бетон используется для укрепления входа в старую шахту. Фото предоставлено Агентства по охране окружающей среды США и Wikimedia Commons.
Рекламные ссылки
Почему бетон так популярен в строительстве?
В городах, по крайней мере, бетон везде, куда ни глянь, и это не трудно понять почему. Это легко сделать из дешевого и легкодоступного ингредиенты, легко разливаются по формам и превращаются во все виды формы (потому что начинает жизнь очень вязкой жидкостью), и это одновременно огнеупорный и (относительно) водонепроницаемый. Но главная причина, по которой это так широко используется в зданиях, заключается в том, что он чрезвычайно прочен в сжатие: вы можете сжать его или выдержать большой вес на это. Он широко используется в стенах и фундаментах (вертикальный другими словами, поддерживает), потому что он отлично подходит для сопротивления весу, сложенному сверху. К сожалению, очень большой недостаток бетона в том, что он примерно в 10 раз слабее на растяжение чем при сжатии. Он легко трескается или ломается, если его согнуть или растянуть. укрепить его сталью внутри, так что это мало пользы в горизонтальных лучах. Хотя бетон выглядит тяжелым и монолитным, он на самом деле намного легче, чем вы можете предположить: его плотность составляет примерно пятую часть плотности вести, треть как плотный, как сталь, на 10 процентов менее плотный, чем алюминий, и только незначительно более плотный, чем стекло.
Хотя бетон часто смешивают на месте и формуют во что угодно формы необходимы в то время, он также может поставляться в сборном виде «модули»; блоки, балки, секции стен, тротуары и облицовка все можно сделать так. Гигантский, современный сегментные мосты, для например, часто быстро и недорого собираются из одинаковых бетонные секции, которые были собраны на заводе и отправлены на окончательный расположение. Это делает их быстрее и легче построить, чем если бы весь мост пришлось отливать на месте, что гораздо сложнее сделать в посреди реки, например, или в неблагоприятных погодных условиях. Другой вариант – сделать бетонные конструкции, сочетающие в себе некоторые сборные секции с другими секциями, сформированными на месте.
Произведение искусства: Идеи из бетона: Томас Эдисон сразу понял великолепие бетона как материала для создания «моментальных» зданий. В начале 20-го века он разработал этот метод изготовления монолитных бетонных домов, которые можно было массово производить недорого в очень больших количествах. Бетон из пары миксеров (синий) подается в резервуар (красный), перемешивается (зеленый), а затем переносится шнеком (оранжевый) наверх огромной трехмерной формы. Вылитая через форму, она образует стены, полы и крышу здания — и даже некоторые детали (например, ванны) внутри! К сожалению, идея так и не прижилась. Работа из патента США 1219., 272: Процесс строительства бетонных зданий Томасом Эдисоном, 13 марта 1917 г., любезно предоставлено Управлением по патентам и товарным знакам США.
Железобетон
Как мы уже видели, бетон представляет собой композиционный материал — цементную матрицу с заполнителями для армирования — это хорошо работает на сжатие, но не на напряжение. Мы можем решить эту проблему, заливая влажным бетоном прочные стальные арматурные стержни (связанные между собой, чтобы получилась клетка). Когда бетон схватится и затвердеет вокруг стержней, получаем новый композиционный материал, железобетон (также называемый армированным цементобетоном или RCC), который хорошо работает в либо на растяжение, либо на сжатие: бетон сопротивляется сжатию (обеспечивает прочность на сжатие), а сталь сопротивляется изгибу и растяжения (обеспечивает прочность на растяжение). По сути усиленный бетон использует один композитный материал внутри другого: бетон становится матрицей, в то время как стальные стержни или провода обеспечивают армирование.
Стальные стержни (известные как арматура , сокращение от арматурный стержень) обычно изготавливаются из скрученных прядей с благородными волокнами. или гребни на них, которые прочно закрепляют их внутри бетона без любой риск поскользнуться внутри него. Теоретически мы могли бы использовать все виды материалов для армирования бетона. Как правило, мы используем сталь потому что он расширяется и сжимается в жару и холод примерно так же, как сам бетон, что означает, что он не расколет бетон, который окружает его, как мог бы другой материал, если бы он расширился более или менее. Однако иногда используются и другие материалы, в том числе различные виды пластмасс.
Фото: «Жидкий камень» на вынос — заливка бетона из автобетоносмесителя. Эти строители ВМС США укладывают мокрый бетон с грузовика на арматуру (сетку из стальных арматурных стержней). Когда бетон схватится, стальные стержни придадут ему дополнительную прочность: бетон плюс сталь равняется железобетону. Фотография лейтенанта Эдварда Миллера, любезно предоставлена ВМС США и Викисклад.
Предварительно напряженный бетон
Хотя железобетон, как правило, является лучшей конструкцией материал, чем обычный материал, он все еще хрупкий и подвержен трещина: при растяжении железобетон может разрушиться, несмотря на его стальная арматура, пропускающая воду, которая затем вызывает бетон выйти из строя, а арматура заржаветь. Решение — поставить армированный бетон постоянно сжимается на предварительное напряжение оно (также называется предварительным натяжением). Поэтому вместо того, чтобы класть стальные стержни в сырую бетонные, как они есть, мы сначала натягиваем (натягиваем) их. Как бетон схватывается, натянутые стержни втягиваются внутрь, сжимая бетон и делая его прочнее. В качестве альтернативы, арматура в железобетоне может подвергаться стрессу после того, как он начинает затвердевать, что известно как постнапряжение (постнапряжение). В любом случае сохранение бетона в сжатом состоянии является хитрый трюк, который помогает остановить его растрескивание (и останавливает трещины от распространение, если они образуются). Еще одно преимущество заключается в том, что можно использовать менее предварительно напряженный или постнапряженный бетон или меньше, более тонкие детали, чтобы нести те же нагрузки, по сравнению с обычными, железобетон.
Фото: Наука проходит через бетон — как он застывает, почему он прочен и почему мы его используем. Это конкретное слово — одна из деталей военного мемориала округа Онондага в Сиракузах, штат Нью-Йорк. Предоставлено: фотографии из архива Кэрол М. Хайсмит, Библиотека Конгресса, отдел эстампов и фотографий.
«Бетонный рак»
Трещины — это последнее, что хочется видеть в здании или мосту, особенно относительно новый, сделанный из бетона. Но если у нас есть бетонные конструкции, относящиеся к римским временам, почему некоторые из бетонные мосты, небоскребы и другие сооружения, построенные всего несколькими десятилетия назад, в конце 20 века, уже разваливаются? Есть несколько объяснений. Старый, римского типа, пуццолановый бетон, сделанный из вулканического пепла, имеет тенденцию трескаться меньше, чем больше современные формы бетона, и применялся он в основном на сжатие, поэтому даже если трещины имели возможность образоваться, вероятность их образования была меньше. распространение. Железобетон чаще используется на растяжение, что Вот почему у него внутри есть эти стальные арматурные «стержни». Но, как мы уже видели, он все еще может треснуть, если он не предварительно напряжен.
Современный бетон разрушается из-за того, что неофициально известно как рак бетона или конкретное заболевание , которое включает в себя три взаимосвязанные проблемы. Сначала щелочи из цемента реагируют с кремнеземом в заполнители, из которых изготавливается бетон. Это делает новые внутри бетона очень медленно растут кристаллы, которые занимают больше комнате, чем исходные «кристаллы», поэтому создание бетон растрескивается изнутри наружу или отслаивается («отслаивается») с поверхности, пропуская воду снаружи. На чем-то вроде автомобильного моста любая вода, попадающая внутрь, также может быть щелочным из-за используемых солей для обработки дороги зимой. Вторая проблема заключается в том, что вода который попадает внутрь, в конечном итоге вступает в контакт со стальными арматурными стержнями внутри, вызывая их ржаветь и разлагаться, возможно, расширяясь, что приводит к фатальным последствиям. слабые места в конструкции. Грязные коричневые пятна, которые вы видите на бетон с «раком» часто возникает из-за просачивания ржавой воды через трещины. Третья проблема заключается в том, что вода, которая просочилась внутрь бетон через трещины зимой может промерзнуть, а значит будет расширяться и вызывать дальнейшие трещины, через которые будет поступать еще больше воды. проникают, вызывая порочный круг вырождения и распада.
Художественное произведение: Как железобетон разрушается: (1) Щелочи из цемента реагируют с кремнеземом в заполнителях, образуя более крупные кристаллы, которые раскалывают бетон изнутри, (2). Вода стекает по щелям (3), ржавление арматурного стержня (4), которое может развалиться и вызвать большее растрескивание или «выкрашивание» краев (5). В холодную погоду, вода, попавшая в трещины, будет расширяться при замерзании (6), вызывая появление новых трещин (7). Трещины не обязательно большие: некоторые из них очень тонкие капилляры, а это значит, что вода может двигаться вверх по ним простое капиллярное действие, а также стекание через них под действием силы тяжести.
Воздействие бетона на окружающую среду
Фото: Некоторые любят бетон, некоторые ненавидят его. Мнения резко расходятся по поводу «бруталистских» городских зданий, таких как Xerox Tower в Рочестере, штат Нью-Йорк, построенный в середине 20 века. Предоставлено: фотографии из архива Кэрол М. Хайсмит, Библиотека Конгресса, отдел эстампов и фотографий.
Растущая озабоченность по поводу окружающей среды и изменения климата в в частности, выявили еще одну серьезную проблему с бетоном: после транспорта и энергетики производство цемента занимает третье место крупнейший источник выбросов углекислого газа. Это отчасти потому, что процесс изготовления цемента выделяет много углекислого газа, но также, очень важно, из-за огромного количества цемента и бетон используется во всем мире. Углекислый газ выделяется в двух довольно разными способами (разделив их примерно пополам): во-первых, из-за энергии ископаемого топлива, используемой при производстве цемент; во-вторых, потому что цемент образуется, когда карбонат кальция превращается в оксид кальция, выделяя при этом углекислый газ. Бетон зависит от цемента, так что это совсем не устойчивое материал, что беспокоит архитекторов, в частности, потому что они склонны быть очень экологически сознательным.
Фото: Ранний пример экологичного бетона 1953 года: плотина Hungry Horse Dam на реке Флэтхед, штат Монтана, США, был построен с использованием 120 000 метрических тонн переработанной летучей золы из мусоросжигательных заводов. Изображение предоставлено Бюро мелиорации США.
Так как двуокись углерода выделяется двумя путями при цементировании производства, отсюда следует, что есть два способа сделать больше экологически чистый бетон. Исторически, начиная с промышленного Революция, большая часть энергии человечества поступает от сжигания угля, который выделяет больше парниковых газов, чем другие виды топлива, и Традиционно цементные печи также работали на угле. Переключение их с уголь в природный газ является одним из решений, так как газ выделяет меньше углерода диоксида на заданное количество энергии. Делаем цементные печи больше эффективный снижает общую потребность в энергии, что также снижает их выбросы углекислого газа. Другое решение — уменьшить количества цемента в бетонной смеси за счет использования вторсырья, например летучая зола от мусоросжигательных заводов. Еще одна захватывающая перспектива – разработка бетона, который вообще не использует карбонат кальция. Вместо этого карбонат получают барботированием углекислого газа из электростанция через морскую воду. Это имеет общий экологический выгоду, так как он забирает вредные выбросы CO2 от энергии растений и вместо этого превращает их в очень полезный бетон. это своего рода улавливания и хранения углерода (CCS).
Еще один экологический недостаток бетона связан с использованием в нем заполнители, которые необходимо добывать, часто из экологически уязвимых мест, таких как речные долины. Использование переработанных заполнителей (включая переработанный бетон из старых снесенных зданий) возможное решение здесь.
Краткая история бетона
Ранняя история
- ~7000 г. до н.э.: неолитическое поселение в Йифтахель в Галилее, Израиль, имеет грубый «бетонный» пол, сделанный с использованием штукатурки из обожженной извести.
- ~5600 г. до н.э.: для полов в Мезолитические (среднекаменный век) сербские жилища на Лепенски Вир, в Сербии, на берегу реки Дунай.
- ~3000 г. до н.э.: египтяне используют грубые формы цемента и бетона в пирамиды.
- ~200 г. до н.э.: римляне использовали тип бетона, называемый пуццоланом (иногда называется пуццолановым цементом) на основе вулканического пепла, полученного из Поццуоли, Неаполь. Он используется в культовых римских сооружениях, таких как Колизей и Пантеон в Риме.
- 400 г. н.э.–~1750 г. н.э.: По сути, конкретное Средневековье: знание бетона полностью утрачена после падения Римской империи.
Новое открытие
- 1750-е годы: Джон Смитон, английский инженер, заново открывает для себя искусство изготовление «гидравлического» цемента (затвердевающего с водой) с использованием Blue Lias камень, глина и пуццолана, первоначально для Маяк Эддистон недалеко от Плимута, Англия.
- 1824: Англичанин Джозеф Аспидин разрабатывает портландцемент, который напоминает природный камень, добытый в Портленде в графстве Дорсет, Англия. Портландцементу суждено стать ключевым компонентом бетона.
- 1832–1834: Уильям Рейнджер патентует сборный железобетон.
- 1867: француз Джозеф Монье патентует железобетон для использования в садовых цветочных горшках, демонстрируя их на Парижской выставке. тот же год.
- ~ 1850-е годы: французский строитель Франсуа Куанье начинает широкое использование бетона в зданиях, включая первый железобетонный дом в Париж, Франция.
- 1884: английский архитектор, проживающий в Америке. Эрнест Лесли Рэнсом патентует витые арматурные стержни, которые обеспечивают лучшее сцепление внутри бетона, поэтому делая его сильнее.
- 1870: Француз Франсуа Хеннебик разрабатывает новый эффективный процесс строительства зданий из железобетона, ведущий к его широкому распространению.
- 1880-е: Предварительно напряженный бетон изобретен в Германии, хотя и не коммерчески разработан.
Современная эпоха
- 1891 год: первая улица в США с бетонным покрытием заложен в Беллефонтейне, штат Огайо. Часть его остается на месте, чтобы этот день.
- 1917: Томас Эдисон, плодовитый американский изобретатель, патентует идею. для серийного бетонного дома, но идея не прижилась.
- 1913: Первая партия товарного бетона доставлена грузовиком на участок в Балтиморе, штат Мэриленд.
- 1915: инженер Линн из Чикаго изобретает цветной бетон. Мейсон Скофилд.
- 1920-е годы: француз Эжен Фрейсинне превращает предварительно напряженный бетон в Коммерчески успешный строительный материал.
- 1936: Бетон используется для завершения строительства мощной плотины Гувера. Самая большая бетонная конструкция, когда-либо созданная до этого момента.
- 1956–1959: американский архитектор Фрэнк Ллойд Райт строит культовый
Музей Гуггенхайма в Нью-Йорке из бетона.
Фото: Запоминающееся современное использование железобетона. Это знаменитая Большая мастерская штаб-квартиры Johnson Wax архитектора Фрэнка Ллойда Райта в Расин, Висконсин. Крыша поддерживается удивительно тонкими железобетонными колоннами. которые сужаются с 5,5 м (18 футов) вверху до всего 23 см (9 дюймов) внизу. В соответствии с Книга Джонатана Липмана о здании, Райт Идея пришла в голову после того, как он увидел официанта, несущего поднос на руке. Изображение предоставлено архивом Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.
- 1962: финский архитектор Ээро Саринен строит знаменитая птичья бетонная крыша центра полетов Trans World Airlines (TWA) в нью-йоркском международном аэропорту имени Джона Ф. Кеннеди. Три года спустя он проектирует культовый бетонный небоскреб Нью-Йорка CBS Building.
- 1970-е: Изобретен железобетон на основе пластиковых волокон.
- 2010-е годы: Воздействие бетона на окружающую среду становится все более серьезной проблемой. Ученые и инженеры начинают обращать внимание на то, как резкое изменение климата может сократить срок службы бетонных зданий.
Узнайте больше
На этом сайте
- Мосты
- Здания
- Чугун и сталь
- Металлы
Книги
Инженерное дело
- Железобетон: механика, теория и дизайн, Джеймс К. Уайт. Prentice-Hall, 2016. Учебник для студентов технических вузов.
- Железобетон: фундаментальный подход, Эдвард Г. Нави. Prentice-Hall, 2009. Подробное руководство для инженеров.
Архитектура
- Ээро Сааринен: Создавая будущее Ээро Сааринен и др. Издательство Йельского университета, 2006. Фотогид по конструкциям и зданиям одного из пионеров железобетонной архитектуры 20-го века.
- Бетонная архитектура Кэтрин Крофт. Гиббс Смит, 2004. Журнальный столик «Праздник бетона», включая историю материала и фотогид по культовым бетонным зданиям и сооружениям.
- Бетонная архитектура: тон, текстура, форма Дэвида Беннета. Birkhäuser, 2001. Подробный обзор 25 известных бетонных сооружений с акцентом на более поздние проекты.
Статьи
- Долгое время являвшийся основным материалом, бетон стал последним штрихом Кэтрин Маклафлин. The New York Times, 16 февраля 2022 г. Почему когда-то конструкционный бетон теперь используется для крошечных, более тонких деталей?
- Бетон, многовековой материал, получает новый рецепт Джейн Марголис, The New York Times, 11 августа 2020 г. Взгляд на усилия по разработке более устойчивых форм бетона.
- Guardian Concrete Week: Увлекательный сборник статей об экологических и социальных проблемах жизни в мире, сделанном из бетона.
- Битва за то, чтобы обуздать наш аппетит к бетону, Тим Боулер. BBC News, 24 октября 2018 г. Каково реальное воздействие бетона на окружающую среду и как его уменьшить?
- Ученые объясняют долговечный бетон древнего Рима Мэтта Макграта. BBC News, 4 июля 2017 г. Минерал алюминий тоберморит, кажется, сделал римский бетон более прочным, чем наш современный аналог.
- Эксперты предлагают приоритеты исследований для «более экологичного» бетона: NIST Tech Beat, 3 апреля 2013 г. Как мы можем сократить выбросы углекислого газа при производстве бетона?
- Альтернатива бетону может сделать здания более прочными Александр Джордж. Wired, 12 августа 2011 г. В связи с разрушительным землетрясением 2011 г. японские инженеры разработали новый прочный строительный материал под названием CO2-структура.
- Ученые разрабатывают экобетон из рисовой шелухи: BBC News, 13 апреля 2010 г. Исследуется новый тип экологически чистого бетона, при производстве которого выделяется меньше углекислого газа.
- Кто виноват во всех бетонных карбункулах?: BBC News, 19 летФевраль 2009 г. Архитектор «Ле Корбюзье» отдавал предпочтение бетонным зданиям; в этой статье Гай Бут размышляет, должны ли мы любить или ненавидеть его работу.
- Сканер, чтобы «заглянуть внутрь» бетона: BBC News, 25 октября 2005 г. Как обнаружить признаки коррозии глубоко внутри гигантских бетонных конструкций?
Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.
Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.
Авторские права на текст © Chris Woodford 2006, 2022. Все права защищены. Полное уведомление об авторских правах и условия использования.
Следуйте за нами
Оцените эту страницу
Пожалуйста, оцените эту страницу или оставьте отзыв, и я сделаю пожертвование WaterAid.
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:
Цитировать эту страницу
Вудфорд, Крис. (2006/2022) Бетон. Получено с https://www.