Регулировка давления в насосной станции: Настраиваем реле давления с двумя пружинами.Пошаговая инструкция для абсолютных чайников

Содержание

Реле давления насосной станции: принцип работы и регулировка

Чтобы сделать в небольшом частном доме автономную систему водоснабжения, будет достаточно обычного насоса, скважинного или поверхностного, с подходящими характеристиками производительности. Но для дома, в котором проживает больше 4 человек, или для 2-3 этажного жилища потребуется устанавливать насосную станцию. Это оборудование уже имеет заводские настройки давления, но иногда их необходимо корректировать. Когда требуется регулировка насосной станции, и как это делать, будет рассказано ниже.

Содержание

  • 1 Устройство насосной станции
  • 2 Реле давления насосной станции
    • 2.1 Механические реле
    • 2.2 Электронные реле
    • 2.3 Характеристики устройства
    • 2.4 Особенности работы
  • 3 Когда требуется регулировать реле
  • 4 Подготовка гидробака и его регулировка
  • 5 Настройка реле давления

Устройство насосной станции

Чтобы правильно отрегулировать данное насосное оборудование, необходимо иметь хотя бы минимальное представление о том, как оно устроено и по какому принципу работает. Главное предназначение насосных станций, состоящих из нескольких модулей – это обеспечение питьевой водой всех точек водозабора в доме. Также данным агрегатам под силу автоматически повышать и поддерживать давление в системе на необходимом уровне.

Ниже приведена схема насосной станции с гидроаккумулятором.

В состав насосной станции входят следующие элементы (см. рисунок выше).

  1. Гидроаккумулятор. Выполнен в виде герметичного бака, внутри которого находится эластичная мембрана. В некоторых емкостях вместо мембраны установлена резиновая груша. Благодаря мембране (груше) гидробак делится на 2 отсека: для воздуха и для воды. Последняя закачивается в грушу или в часть бака, предназначенную для жидкости. Подключение гидроаккумулятора происходит на отрезке между насосом и трубой, ведущей к точкам водозабора.
  2. Насос. Может быть поверхностным или скважинным. Тип насоса должен быть либо центробежным, либо вихревым. Вибрационный насос для станции использовать нельзя.
  3. Реле давления. Датчик давления автоматизирует весь процесс, при котором вода подается из скважины в расширительный бак. Реле отвечает за включение и выключение двигателя насоса при достижении в баке необходимой силы сжатия.
  4. Обратный клапан. Препятствует вытеканию жидкости из гидроаккумулятора при отключении насоса.
  5. Электропитание. Чтобы подключить оборудование к электрической сети, для него требуется протянуть отдельную проводку с сечением, соответствующим мощности агрегата. Также в электрической цепи должна быть установлена система защиты в виде автоматов.

Данное оборудование работает по следующему принципу

. После открытия крана в точке водозабора вода из гидроаккумулятора начинает поступать в систему. Одновременно в баке происходит снижение сжатия. Когда сила сжатия снизится до величины, установленной на датчике, происходит замыкание его контактов, и двигатель насоса начинает работать. После прекращения потребления воды в точке водозабора, или при повышении силы сжатия в гидроаккумуляторе до необходимого уровня, происходит срабатывание реле на отключение насоса.

Реле давления насосной станции

Датчик в автоматическом порядке регулирует процесс откачки воды в системе. Именно реле давления отвечает за включение и отключение насосного оборудования. Он же контролирует уровень напора воды. Встречаются механические и электронные элементы.

Механические реле

Устройства такого плана отличаются простой и вместе с тем надёжной конструкцией. Они гораздо реже выходят из строя, чем электронные аналоги, потому как в механических реле перегорать попросту нечему. Регулировка происходит посредством смены натяжения пружин.

Механическое реле давление регулируется натяжением пружин

Механическое реле включает в себя пластину из металла, где закреплена контактная группа. Здесь же находятся клеммы для подключения устройства и пружины для регулировки. Нижняя часть реле отведена под мембрану и поршень. Конструкция датчика достаточно проста, поэтому с самостоятельной разборкой и анализом повреждений серьёзных проблем возникнуть не должно.

Электронные реле

Подобные устройства привлекают в первую очередь удобством пользования и своей точностью. Шаг электронного реле заметно меньше, чем механического, а значит, вариантов регулировки здесь больше. Но электроника, в особенности бюджетная, часто ломается. Поэтому излишняя экономия в этом случае нецелесообразна.

Электронное реле давления воды

Ещё одно явное преимущество электронного реле – это защита техники от холостого хода. Когда напор воды в магистрали будет минимальным, элемент некоторое время будет продолжать работать. Такой подход позволяет защитить основные узлы станции. Отремонтировать электронное реле своими силами гораздо сложнее: кроме технических знаний необходим специфический инструмент. Поэтому диагностику и обслуживание датчика лучше предоставить профессионалам.

Характеристики устройства

В зависимости от модели станции и её типа устройство может располагаться как внутри корпуса, так и крепиться снаружи. То есть, если оборудование идёт без реле, или его функционал не устраивает пользователя, то всегда есть возможность подобрать элемент в отдельном порядке.

Датчики также различаются по максимально допустимому давлению. Добрая половина классических реле настроены на 1,5 атм для запуска системы и 2,5 атм на её деактивацию. Мощные бытовые модели имеют порог в 5 атм.

Когда речь идёт о внешнем элементе, то здесь крайне важно учесть характеристики насосной станции. Если оперировать слишком высоким давлением, то система может не выдержать, и как следствие появятся протечки, разрывы и скорый износ мембраны. Поэтому так важно отрегулировать реле именно с оглядкой на критичные показатели станции.

Особенности работы

Рассмотрим принцип работы устройства на примере одного из самых распространённых реле для насосных станций – РМ-5. В продаже также можно встретить зарубежные аналоги и более продвинутые решения. Подобные модели укомплектованы дополнительной защитой и предлагают расширенные функциональные возможности.

РМ-5 включает в себя подвижную металлическую основу и пару пружин с двух сторон. Мембрана в зависимости от давления двигает пластину.

Посредством прижимного болта можно отрегулировать минимальные и максимальные показатели, при которых техника включается или отключается. РМ-5 оснащён обратным клапаном, поэтому вода при деактивации насосной станции не сливается обратно в скважину или колодец.

На рынке также можно встретить заводские и любительские модификации РМ-5. Реле усиливают, дополняют какими-то защитными элементами и функционалом.

Поэтапный разбор работы датчика давления:

  1. По открытию крана вода начинает поступать из бака.
  2. По мере убывания жидкости в насосной станции давление постепенно снижается.
  3. Мембрана воздействует на поршень, а он в свою очередь замыкает контакты, включая технику.
  4. По закрытию крана бак наполняется водой.
  5. Как только показатель давления достигает максимальных значений, оборудование отключается.

От имеющихся установок зависит периодичность работы насоса: как часто он будет включаться и отключаться, а также уровень давления. Чем меньше промежуток между запуском и деактивацией оборудования, тем дольше прослужат основные узлы системы и вся техника в целом. Поэтому так важна грамотная регулировка реле давления.

Когда требуется регулировать реле

Как было сказано выше, реле автоматизирует процесс закачивания жидкости в систему водопровода и в расширительный бак. Чаще всего насосное оборудование, купленное в готовом виде, уже имеет базовые настройки реле. Но возникают ситуации, когда требуется срочная регулировка давления насосной станции. Выполнять данные действия придется в случаях, если:

  • после запуска двигателя насоса, он сразу же отключается;
  • после отключения станции наблюдается слабый напор в системе;
  • при работе станции в гидробаке создается чрезмерная сила сжатия, о чем свидетельствуют показания манометра, но аппарат при этом не отключается;
  • не срабатывает реле давления, и насос не включается.

Чаше всего, если у агрегата появляются вышеперечисленные симптомы, то ремонт реле не требуется. Нужно всего лишь правильно настроить данный модуль.

Подготовка гидробака и его регулировка

Перед поступлением гидроаккумуляторов в продажу в них на заводе закачивают воздух под определенным давлением. Закачка воздуха происходит через золотник, установленный на данной емкости.

В среднем, давление в насосной станции должно быть таким: в гидробаках объемом до 150 л. — 1,5 бар, в расширительных баках от 200 до 500 л. — 2 бар.

Под каким давлением находится воздух в гидробаке, можно узнать из этикетки, приклеенной к нему. На следующем рисунке красной стрелкой указана строка, в которой обозначено давление воздуха в накопителе.

Также данные замеры силы сжатия в баке можно произвести, используя автомобильный манометр. Измерительный прибор подключается к золотнику бака.

Чтобы начать регулировать силу сжатия в гидробаке, необходимо его подготовить:

  1. Отключите оборудование от электросети.
  2. Откройте любой кран, установленный в системе, и дождитесь момента, когда жидкость перестанет течь из него. Конечно же, будет лучше, если кран будет находиться недалеко от накопителя или на одном этаже с ним.
  3. Далее, замерьте силу сжатия в емкости, используя манометр, и запомните это значение. Для накопителей небольших объемов показатель должен быть около 1,5 бар.

Чтобы правильно отрегулировать накопитель, следует учитывать правило: давление, вызывающее срабатывание реле на включение агрегата, должно превышать силу сжатия в накопителе на 10%. Например, реле насоса включает двигатель при 1,6 бар. Значит, необходимо создать и соответствующую силу сжатия воздуха в накопителе, а именно 1,4-1,5 бар. Кстати, совпадение с заводскими настройками здесь не случайно.

Если датчик настраивается для запуска двигателя станции при большем, чем 1,6 бар силе сжатия, то, соответственно, и настройки накопителя меняются. Увеличить давление в последнем, то есть накачать воздух, можно, если воспользоваться насосом для накачки автомобильных шин.

Совет! Коррекцию силы сжатия воздуха в накопителе рекомендуется проводить хотя бы 1 раз в год, поскольку за зиму она может снижаться на несколько десятых бар.

Настройка реле давления

Бывают случаи, когда настройки датчика по умолчанию не устраивают пользователей насосного оборудования. Например, если открыть кран на каком-либо этаже здания, то можно заметить, что напор воды в нем быстро снижается. Также установка некоторых систем, очищающих воду, невозможна, если сила сжатия в системе находится на уровне меньше 2,5 бар. Если станция настроена на включение при 1,6-1,8 бар, то фильтры в данном случае работать не будут.

Обычно настройка реле давления своими руками не вызывает затруднений и выполняется по следующему алгоритму.

  1. Запишите показатели манометра при включении и отключении агрегата.
  2. Выдерните шнур питания станции из розетки или отключите автоматы.
  3. Снимите крышку с датчика. Обычно она закреплена 1 шурупом. Под крышкой можно увидеть 2 винта с пружинами.
    Тот, что больше, отвечает за давление, при котором происходит запуск двигателя станции. Обычно возле него стоит маркировка в виде буквы “Р” и нарисованы стрелки с нанесенными возле них знаками “+” и “-”.
  4. Чтобы увеличить силу сжатия, вращайте гайку по направлению к знаку “+”. И наоборот, чтобы снизить ее, нужно крутить винт к знаку “-”. Сделайте один оборот гайки в требуемом направлении и запустите аппарат.
  5. Дождитесь, пока станция отключится. Если показания манометра вас не устраивают, то продолжайте вращать гайку и включать аппарат до тех пор, пока давление в накопителе не достигнет требуемого значения.
  6. На следующем этапе следует настроить момент выключения станции. Для этого предназначен винт меньшего размера с пружиной вокруг. Возле него находится маркировка “ΔP”, а также нарисованы стрелки со знаками “+” и “-”. Настройка регулятора давления на включение устройства проводится так же, как и на отключение аппарата.

В среднем, интервал между силой сжатия, при которой датчик включает двигатель станции, и значением силы сжатия, когда агрегат останавливается, находится в пределах 1-1,5 бар. При этом интервал может увеличиваться, если выключение будет происходить при больших значениях.

Например, агрегат имеет заводские настройки, при которых Рвкл = 1,6 бар, а Рвыкл = 2,6 бар. Из этого следует, что разница не выходит за пределы стандартного значения и равна 1 бар. Если требуется по каким-либо причинам увеличить Рвыкл до 4 бар, то следует увеличить и интервал до 1,5 бар. То есть, Рвкл должно быть около 2,5 бар.

Но при увеличении данного интервала увеличится и перепад давления в системе водоснабжения. Иногда это может вызывать дискомфорт, поскольку придется израсходовать большее количество воды из бака, чтобы станция включилась. Но благодаря большому интервалу между Р

вкл и Рвыкл включение насоса будет происходить реже, что увеличит его ресурс.

Вышеописанные манипуляции с настройками силы сжатия возможны только при наличии оборудования соответствующей мощности. К примеру, в тех. паспорте к аппарату указано, что он может выдать не более 3,5 бар. Значит, настраивать на нем Рвыкл = 4 бар не имеет смысла, поскольку станция будет работать без остановки, а давление в баке так и не сможет подняться до необходимого значения. Поэтому, чтобы получить давление в ресивере 4 бар и выше, необходимо приобрести насос соответствующей мощности.

особенности конструкции, настройка и ремонт

Реле давления является одним из ключевых элементов управления насосной станции, который обеспечивает автоматическое включение и отключение, и управляет подачей воды в емкость согласно предустановленным настройкам. Каких-либо рекомендаций касаемо предельных значений для верхнего и нижнего давления нет. Зачастую производители поставляют свои изделия настроенными под определенные параметры. Чаще всего это 1,8 бар для включения и примерно 3 бар на выключение. Но в ходе эксплуатации нередко требуется дополнительная настройка, а потому каждый пользователь вынужден самостоятельно производить регулировку реле давления насосной станции согласно данных, указанных в инструкции.

  • Конструкция и принцип работы реле давления
  • Как устроено реле?
  • Настройка реле давления
  • Как правильно настроить уровни давления включения и отключения насоса?
  • Регулировка реле давления

Конструкция и принцип работы реле давления

Реле являет собой небольшой блок с пружинами максимального и минимального давления. Его регулировка производится посредством все тех же пружин, которые реагируют на изменения силы давления. Достигнув минимальных показателей, пружина ослабевает, а при максимальных – сжимается еще сильнее. Таким образом, она вызывает размыкание контактов реле, и соответственно включает и выключает насосную станцию.

При наличии воды в водопроводе, реле позволяет создать постоянное давление в системе и требуемый напор. Благодаря правильной настройке обеспечивается автоматическая работа насоса, что позволяет существенно продлить срок его эксплуатации.

Но прежде чем переходить к настройке, давайте пройдемся по устройству и принципу работы насосной станции.

Она включается в себя следующие компоненты:

  • электрический насос, который производит забор воды из внешнего источника. Он может быть погружным, постоянно находящимся под водой или наружным;
  • обратный клапан, препятствующий уходу воды;
  • реле давления;
  • бак для накопления воды;
  • система обвязки, которая состоит из различных вспомогательных компонентов вроде фильтров, труб и т.д.

Что же касается принципа работы, то сложного в этом устройстве ничего нет. Внутри резервуара или бака находится баллон в форме груши, выполненный из модифицированной пищевой резины, а между ней и стенками емкости закачан воздух. Насос заполняет «грушу» водой, из-за чего она расширяется и сжимает внешнюю воздушную прослойку, которая начинает давить на стенку. С помощью регулировки реле, владелец насосной станции может сам установить предел наполнения резервуара и момент ее отключения. Все это контролируется посредством манометра.

Чтобы вода не ушла обратно в колодец или в систему, в насосе предусмотрен подпружиненный клапан. Достаточно лишь открыть и вода, которая собралась в «груше», пойдет по системе. Давление будет опускаться по мере расходования воды и после того, как оно упадет ниже установленного в реле порога, насосная станция автоматически включится и наполнит резервуар водой.

Реле подключается между выходом из резервуара и обратным клапаном на трубопроводе. Все разветвители в целях экономии обычно собираются из отдельных компонентов, но на деле легче купить пятиходовой штуцер, где предусмотрены резьбы под все детали, в числе которых и манометр. При этом крайне важно не перепутать местами входы для обратного клапана и штуцера, поскольку настройка насоса будет невозможной в этом случае. Но использование стандартных запчастей позволяет свести такие ошибки к минимуму.

Как устроено реле?

Для насосных станций, предназначенных для домашнего использования зачастую используется реле давления РМ-5 или его аналоги. Стоит учитывать, что устройство может быть изменено, а потому приведенные в данной статье описание будет лишь примерным и при возникновении проблем, вам придется искать их причину либо в прилагаемой инструкции, либо в информации на просторах Всемирной паутины.

Каждое реле модели РМ-5 имеет металлическую подвижную пластину. С противоположных сторон на нее оказывают давление две пружины. Кроме этого, на нее давит еще и наполненная водой «груша». Вращая прижимную гайку на соответствующей пружине, можно уменьшить или увеличить пределы срабатывания. Пружины не дают воде сместить пружину, то есть механизм реле устроен таким образом, что когда происходит смещение, замыкаются группы электрических контактов.

Но чтобы проще было понять, давайте распишем подробный алгоритм работы:

  • насосная станция закачивает воду в резервуар. Двигатель включается благодаря замыканию контактов в реле;
  • количество воды в баке увеличивается и при достижении определенного значения верхнего давления, срабатывает механизм и разрывается электроцепь, после чего насос выключается. Утечке воды препятствует обратный клапан;
  • по мере расходования воды «груша» опустошается, в системе падает давление и реле снова включается, замыкая контакты.

Настройка реле давления

Если вас не устраивают заводские предустановки реле давления, то в таком случае вы сможете произвести его настройку самостоятельно. Все что потребуется для этого – отвертка и ключ для регулировки гаек.

Стоит понимать, что настройка реле очень важный и ответственный процесс, поскольку от него зависит насколько правильно будут выставлены предельные уровни срабатывания, насколько удобно будет эксплуатировать насосную станцию и сроки безаварийной работы как ее самой, так и отдельных компонентов.

Первым делом необходимо будет проверить давление в баке-резервуаре. Чаще всего он идет с завода, с уровнем включения в 1,5 бар, а отключения – 2,5 бар. Проверять давление нужно, когда бак пустой, а насосная станция отключена от сети. Для проверки следует использовать автомобильный механический манометр, поскольку его корпус выполнен из металла, а потому точность показания будет более достоверной, чего не скажешь об электрических или пластиковых. Дело в том, что на их показаниях может серьезно отразиться температура воздуха в помещении или уровень заряда аккумулятора. Также рекомендуется, чтобы предел шкалы манометра был как можно меньшим, поскольку на шкале в 50 атмосфер будет сложно измерить 1 атмосферу.

Чтобы проверить давление в резервуаре, следует открыть колпачок, который закрывает золотник и подсоединить манометр. В дальнейшем эту процедуру стоит проводить хотя бы раз в месяц. Воды в баке в этот момент быть не должно, а насосную станцию следует отключить из сети 220В.

Выбрав требуемый режим работы, следует зафиксировать ее, удалив лишний воздух или, наоборот, дополнительно закачав. Следует не забывать, что давление ни в коем случае нельзя уменьшать до значения меньше одной атмосферы и, соответственно, перекачивать. Если в баке мало воздуха, то резиновая «груша» с водой будет касаться стенок бака, а большое количество не позволит закачать много воды, поскольку существенный объем бака забирает воздух.

Как правильно настроить уровни давления включения и отключения насоса?

Как уже выше было сказано, насосные станции, поставляемые в готовом для эксплуатации виде, имеют уже настроенное реле согласно наиболее оптимальным параметрам. Но, если она будет собираться из отдельных элементов на месте, то регулировать реле нужно в обязательном порядке, поскольку необходимо обеспечить нормальную взаимосвязь между объемом резервуара и мощностью насоса. Также возникает потребность изменить исходную настройку. Потому в этих случаях порядок действий должен быть следующим:

  • завершив регулировки давления в баке, следует включить насосную станцию, чтобы закачалась вода. Он отключится после того, как будет достигнуто предельное значение. Каждое устройство имеет свое предельное давление и максимально допустимый напор, которые нельзя превышать. Это можно определить прекращением его роста. Тогда насос следует выключать вручную. Если максимальное значение не совпадает с приведенным в инструкции к реле уровнем, следует провести настройку, вращая малую гайку;
  • таким же образом измеряется и нижнее давление. Нужно слить воду из бака и наблюдать за показаниями манометра. Давление будет постепенно падать и когда оно достигнет нижнего предела, насос включится. Чтобы отрегулировать его, необходимо подкрутить большую гайку. Показатель нижнего давления должен быть где-то на 10% больше давления в баке. В противном случае резиновая мембрана может быстро прийти в негодность.

Обычно насос выбирается с такими параметрами, которые не позволяют накачивать бак до крайнего предела. А давление, которое должно его отключать, устанавливается на пару атмосфер больше порога включения.

Также разрешена установка предельных уровней давления, отличающихся от рекомендуемых производителем реле значений, что позволяет создать свой собственный вариант режима эксплуатации насосной станции. Регулируя давление малой гайкой, стоит учитывать, что начальной точкой отсчета должен быть нижний уровень, заданный большой гайкой. Резиновые шланги и прочая сантехника рассчитаны на давление, не выше рекомендуемого производителем, что следует учесть при монтаже. Кроме этого, чрезмерно сильный напор воды нередко оказывается ненужным и вызывает дискомфорт.

Регулировка реле давления

Теперь давайте поговорим непосредственно о регулировке реле. Процесс ее сложным назвать нельзя, но к некоторым моментам придется приловчиться. В нашем примере необходимо установить верхний порог в 3 атмосферы, а нижний – 1,7 атмосфер. Регулируется это так:

  • необходимо включить насос и закачать воду до значения 3 атмосферы;
  • выключить насосную станцию;
  • снять крышку реле и медленно крутить малую гайку, пока реле не запустится. Если вращать ее по часовой стрелке – давление увеличивает, если против – уменьшается;
  • открыть кран и слить воду, пока на манометре не покажется значение 1,7 атмосфер;
  • закрывайте кран;
  • снимите крышку реле и также медленно прокручивайте большую гайку, пока не сработают контакты.

Таким образом, если задать высокое давление для отключения и низкое для включения, в резервуар будет наполняться большим количеством воды, что позволит реже использовать насос. Небольшие неудобства могут появиться, если наблюдается большой перепад давлений, в случаях, когда емкость полная или почти пустая. В остальном же, когда диапазон давлений небольшой, насос придется чаще использовать. Но зато вода будет поступать в систему равномерно и тем самым будет обеспечен стабильный и комфортный напор.

Ремонтировать реле насосной станции возможно, однако учитывайте, что это лишь временная мера. Поскольку данный элемент защищает сам насос от перегрузок, а мембрану внутри бака от повреждений. С учетом этого, лучше будет сразу приобрести новое реле. Потому единственным исключением будет лишь текущее обслуживание, а именно смазка трущихся деталей для снижения сопротивления и максимально точного срабатывания.

Контроль и регулировка давления воздуха в гидроаккумуляторе

Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т. ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

1. ОСНОВНЫЕ ПОНЯТИЯ

Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster.ru

Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2. 1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер.ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др., передаются Пользователем Администрации Сайта с согласия Пользователя.

3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

  • Обработка информации осуществляется на законной и справедливой основе;
  • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
  • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
  • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
  • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

4. 5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

для физического лица:

  • номер основного документа, удостоверяющего личность Пользователя или его представителя;
  • сведения о дате выдачи указанного документа и выдавшем его органе;
  • дату регистрации через Форму обратной связи;
  • текст обращения в свободной форме;
  • подпись Пользователя или его представителя.

для юридического лица:

  • запрос в свободной форме на фирменном бланке;
  • дата регистрации через Форму обратной связи;
  • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

  • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
  • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
  • защита от вредоносных программ;
  • обнаружение вторжений и компьютерных атак.

5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

  • в целях удовлетворения требований, запросов или распоряжения суда;
  • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
  • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

Вычисляем оптимальное давление в насосной станции

При эксплуатации насосной станции можно столкнуться с ситуацией, когда сбились настройки или вышло из строя реле давления. Это легко заметить: либо уменьшилось давление в водопроводе, либо насосная станция не включается на заданной нижней границе давления.

Механическое реле давления автоматизирует работу насосной станции, управляя включением-отключением насоса для поддержания стабильного давления воды в трубопроводе. На заводе-изготовителе устанавливаются стандартные настройки: давление отключения 2,5 – 3,0 атм., включения – 1,5 – 1,8 атмосферы (в зависимости от производителя). При замеченных проблемах с напором воды в доме необходимо ответственно подойти к настройке реле давления, так как существует прямая зависимость межу настройкой реле, объемом гидроаккумулятора и напором.

Что используется для регулирования

Для регулировки давления используется специальное реле, которое так и называется «реле давления». Оно является неотъемлемой деталью любого комплекта станции. При достижении максимальной отметки давления насос будет отключаться автоматически (это значение можно выставить самостоятельно), то же самое будет происходить и при снижении уровня давления. Большинство подобных устройств представляют собой металлические комплектующие, на которых расположены несколько регуляторов (пружинных).

Помимо этого там находятся клеммы, которые используются для подсоединения станции к общей сети и которые участвуют в заземлении. Имеет собственную контактную группу. Поверх все они закрываются при помощи пластиковой крышки. В нижней части монтируется мембрана, которая закрывается при помощи фланцевого патрубка. Зачастую используется тип соединения американка, который позволяет без труда прикрепить ее к переходнику насоса. В большинстве случаев, основные регулировки устанавливаются еще производителем и составляют: верхнее – 2,9-3,1 бар и нижнее – 1,5 бар. Максимальный показатель реле составит 5,5 бар. Подобная информация указывается производителем на упаковке или в паспорте устройства.

Пошаговая инструкция, как отрегулировать своими руками

Настройка проводится при выключенном электропитании. Для проверки результата станцию подключают к сети.

Инструменты

Регуляция системы производится выставлением реле. Инструмент для работы потребуется нехитрый:

  • торцевой или рожковый ключ;
  • отвертка.

Подготовка


Реле давления находится в черной коробочке возле манометра.
Принцип его работы заключается в замыкании и размыкании электрических контактов. Поэтому вначале:
  1. Выключают электропитание.
  2. Отвинчивают отверткой шуруп, находящийся в колпачке.
  3. Снимают с устройства кожух.

Процесс

Под крышкой реле находятся две пружины: большая и маленькая. Давление в водопроводе действует на них посредством мембраны. Именно от натяжения пружин зависит 2 положения реле.

Действия регулировки:

  1. Затягивание гайки на большой пружине увеличивает давление выключения. Выбирают направление вращения гайки. 1 оборот гайки изменяет значение нижнего показания манометра приблизительно на 0,4 бара (1 атм. ≈ 1 бар). Ослабив или подтянув на глаз пружину, включают систему и снимают показания контролирующего прибора.
  2. Если предыдущие действия не привели к желаемому результату, продолжают регулирование большой пружины. После удачной попытки переходят к настройке маленькой пружины.
  3. Эта пружина выставляет разницу между нижним и верхним показаниями манометра исправного оборудования. Изменение регулируемой ею характеристики требует приблизительно в 2 раза меньше оборотов, чем настраивание большой пружины на ту же величину. Сжимание маленькой пружины приводит к увеличению диапазона работы системы при выключенном моторе. Результаты регулирования проверяются аналогично предыдущему случаю, в реальных условиях работы станции. Теперь сразу можно проверять нижнее и верхнее значение манометра.

Разрыв между давлениями включения и выключения не должен быть меньше 1 атмосферы.

После выставления контрольных значений манометра рекомендуется проследить, чтобы насос запускался не чаще, чем 30 раз в час.

Насос не набирает необходимый уровень давления

В процессе эксплуатации любого устройства данного типа, будь то импортное или отечественное, может случиться ситуация, когда произошел сбой в первоначальных установках, и работа устройства перестала быть оптимальной. В качестве причин можно назвать десяток типичных ситуаций, но хотелось бы обратить внимание на наиболее очевидные и распространенные:

  • недостаточный показатель напряжения в сети;
  • поломка коллектора;
  • недостаточный уровень мощности насоса, установленного на станции.

Последняя ситуация подразумевает неверный выбор основных комплектующих, которые не способны предоставить оптимальный уровень давления внутри устройства. К тому же уровень жидкости может находиться слишком глубоко или далеко. Если устройство эксплуатировалось достаточно длительное время, может произойти весьма очевидный износ отдельных комплектующих, которые не позволят устройству работать на полную мощность. Для исправления сложившейся ситуации, потребуется замена станции на модель помощнее. Также возможно понизить уровень максимального давления, дабы оптимизировать работу станции.

Для того, чтобы подобных ситуаций не произошло, следует произвести верные расчеты касательно необходимой мощности устройства. Даже малейшая ошибка в вычислениях может привести к ряду дополнительных затрат, которые могут быть весьма существенными. В некоторых случаях единственным выходом может стать покупка нового оборудования. Бывают случаи, когда уровень оптимального давления набирается долгое время, что может привести к небольшой утечке воды. Может где-нибудь лопнуть труба и нарушить соединение (место установки резьбы). Если такое произошло, следует незамедлительно проверить всю систему на предмет неисправностей. Протечку следует искать в таких местах:

  • соединительные участки;
  • изгибы;
  • колено.

Небольшую течь можно устранить, затянув крепления чуть потуже. Если пробоина большая, то участок отключается и изъян заделывается вручную. При напряжении в сети менее 222 В, оптимального уровня давления внутри устройства ожидать не следует. Устройство отключается, и при помощи домашнего тестера производится замер напряжения в сети. Возможны существенные потери КПД, которые в некоторых случаях могут составить 15%.

Основные неполадки и причины из возникновения

Вывести из строя бытовую насосную станцию могут различные факторы, включая нарушение целостности гидробака или труб, утечку воды или воздуха, попадание различных примесей в систему.

Вмешаться в работу насосной станции в случае неполадок в ее работе можно в следующих случаях:

  • В систему попал песок или другие примеси. Это может стать причиной образования коррозии и снижению производительности. Предотвратить засорение системы можно, используя различные фильтрующие элементы для очистки воды.
  • Снижение давления воздуха в системе. Подобное явление приводит к частому срабатыванию насоса и уменьшению срока его эксплуатации. Избежать подобной неприятности помогает регулярное измерение воздушного давления и настройка насосной станции при необходимости.
  • Нарушение герметичности стыков на всасывающем трубопроводе. В результате двигатель постоянно работает, но перекачивание воды не происходит.
  • Неправильная регулировка гидрофора доставляет большое количество неудобств и может стать причиной сбоя в работе насосной станции.

Регулярный осмотр и профилактические работы позволяют срок службы насосного оборудования. При этом важно помнить, перед тем как отрегулировать давление на насосной станции требуется отключение насосной станции от электросети и слив воды.

Если станция не держит давление

Бывают ситуации, когда установка не поддерживает необходимый уровень давления, то беж происходит существенное снижение показателя в тот момент, когда вода и вовсе не расходуется. Это подразумевает наличие неисправности в обратном клапане устройства. Причиной может быть загрязнение, которое приводит к тому, что частично вода сливается в резервуар. Если с клапаном все в порядке, то следует начать поиски утечки. Подобная ситуация может сложиться и в том случае, если жидкость подается в систему под куда меньшим напором. Тогда необходимо провести самостоятельную регулировку давления станции. Изменению подлежит только реле, которое отвечает за функцию автоматического выключения и включения станции.

Какой показатель считается оптимальным:

  • при отключении показатель будет 2,5-3 атм;
  • при включении показатель будет 1,5-1,8 атм.

Любые манипуляции следует совершать с особой аккуратностью, тем более, если речь идет о регулировке датчиков давления внутри устройства. Неверные действия могут сбить общую настройку и привести к скорой поломке оборудования. Любые настройки должны начинаться с проверки работоспособности гидроаккумулятора. Для начала его отключают от сети, а бак сливается. Уровень давления можно измерить и при помощи автомобильного насоса, на котором установлен манометр (показатель должен составить порядка 1,5 атм). Подкачивается в том случае, если этот показатель ниже. Рекомендуется с периодичностью проверять давление и подкачивать в случае необходимости. Это поможет существенно продлить срок службы устройства. Если работа оборудования не налажена даже после проведения всех необходимых манипуляций, то настройке уже должен подлежать сам датчик.

Целостность мембраны также может о многом сказать. Представляет собой резиновую грушу, которая размещена в самом бачке. Если при нажатии вода слегка подтекает, то герметичность нарушена. В этом случае сначала решается проблема с грушей, а уже потом проводится регулировка. При проведении ремонтных работ понадобится частичная разборка бачка. Подобные работы не должны составить особого труда. Достаточно поочередно снять болты, находящиеся на корпусе, после чего аккуратно удалить бачок. После груша натягивается и проверяется повторно. Если дырочка небольшая, то ее можно заделать. При наличии существенных повреждений рекомендуется заменить изделие.

Установите фильтры

Два фильтра для очистки. Самопромывающийся и полипропиленовая нить

Изначально проектирование и подключение насосной станции требует соблюдения требований установленного регламента общей эксплуатации всей конструкции в целом. Для первичной очистки воды требуется наличие определённых очищающих элементов. Распространённым вариантом считается установка фильтров механической очистки на входе водоснабжения перед насосной станцией.

Первый фильтр состоит из пластиковой колбы с сеткой внутри для сбора крупных частиц мусора. Следующий очищающий элемент установлен сразу за первым, состоящий из колбы, внутри которой установлен фильтр полипропиленовая нить. С её помощью происходит окончательная фильтрация (очистка) воды, поступающей в основной водопровод дома.

Обычно оба фильтра используются не только для водоснабжения. Опытные проектировщики параллельно с подачей воды используют фильтра на выходе для накопительной емкости. То есть отфильтрованную воду можно подавать сразу напрямую в дом, или через накопительную ёмкость. Это могут быть водонагреватель, большой резервный накопитель и др.

Проводим настройку гидроаккумулятора

После покупки нового гидравлического бачка, необходимо его правильно установить. Но перед этим следует правильно определить давление внутри основного резервуара и самой системы. Для начала давление подкачивается вручную до 1,5 атм, но если имеется большая утечка, стоимость подобного оборудования может быть существенно снижена поставщиками, дабы сбыть бракованную продукцию. Для того, чтобы убедиться в исправности, необходимо слегка открутить декоративный колпачок, который имеется на каждом золотнике в автомобиле и проверить уровень давления. При возможности следует использовать все тот же манометр. При этом он может быть как механическим, так и электронным. Корпус может быть изготовлен из высококачественного пластика или металла. В некоторых моделях он является неотъемлемым комплектующим.

Точность этого прибора должна быть максимальной, ведь даже отклонение в 0,5 атм может повлиять на качество работы оборудования. Пластиковые изделия рекомендуется не использовать, так как уровень их погрешности достаточно высок. В большинстве случаев речь идет о моделях китайского производства. Уровень заряда и окружающая температура также могут повлиять на показатели, снимаемые с электрических манометров. Их стоимость слишком высока. Именно поэтому рекомендуется использовать самый обычный автомобильный манометр. Количество делений должно быть минимальным, что позволит произвести более точные измерения. При наличии шкалы на 20 атм, измеряется всего 1 или атм. В этом случае особой точности не будет. Если воздушных масс в резервуаре меньше, то воды там несколько больше. При этом разница между заполненным и пустым бачком будет весьма существенной.

При необходимости, можно поддерживать уровень давления в 1,5 атм, тогда давления будет слегка повышенным. Если речь идет исключительно о бытовом использовании, то достаточным будет показатель в 1 атм. Куда меньший запас жидкости будет в бачке при давлении в 1,5 атм. В этом случае подкачивание будет происходить несколько чаще. При отсутствии электроэнергии жидкости может и не хватить. В этом случае лучше пожертвовать показателем давления, ведь душ с гидромассажем можно использовать и при полном бачке, а вот после его опустошения останется только ванная. Правильный режим будет установлен только после того, как будут расставлены основные приоритеты. Ниже отметки в 1 атм понижать не имеет смысла. Правда, существенно повышать также не стоит. Если давления будет недостаточно, а груша будет наполнена полностью, то она будет соприкасаться со стенками резервуара, что приведет к скорейшей поломке. При повышенном давлении полностью накачать бачок также не получится, так как большую часть пространства будет занимать воздух.

Нужно ли повторять процедуру?


Пересматривать отрегулированные параметры может потребоваться лишь в случае изменения режима эксплуатации оборудования.

К этому могут вынудить следующие ситуации:

  • изменение количества членов семьи;
  • передача установки вместе с домом или дачей новым жильцам;
  • установка гидроаккумулятора другого объема.

Для того, чтобы поддерживать стабильную работу системы в соответствии с настройками, 1 раз в квартал проверяют количество воздуха в накопительном баке.

Критерии выбора

При выборе регулятора обязательно обращайте внимание не только на конструктивное исполнение прибора и его технические характеристики, но и на материал, из которого он сделан. . Конструктивные особенности

Конструктивные особенности

Современные РДВ в зависимости от конструкции делятся на поршневые и мембранные. Несмотря на то, что поршень практически не изнашивается, редукторы первого типа менее надёжны. Связано это как с чувствительностью к чистоте воды (поршень может заклинить от частичек грязи или песка), так и с возможностью коррозии элементов конструкции.

РДВ мембранного типа неприхотливы в обслуживании, так как диафрагма делит их рабочее пространство на две камеры. Одна из них полностью герметизирована от контакта с водой. Как вы, наверное, уже догадались, именно в этой половине и установлено большинство деталей редуктора. При соблюдении правил эксплуатации, работа устройства не требует вмешательства, поэтому единственным недостатком можно считать необходимость регулярного контроля целостности мембраны.

Технические параметры

Бытовые редукторы, выпускаемые промышленностью, рассчитаны на разное входное и выходное давление. Например, устройство, позволяющее подключение к магистрали, рассчитанной на 15 бар, может обеспечить выходные параметры в пределах 1–4 бар. Чтобы не путаться в терминах, часто величину в 1 бар принимают равной 1 атмосфере, хоть на самом деле 1 бар = 0.987 атм. Давление на выходе бытовых регуляторов составляет от 0.5 до 4 атм или от 1 до 6 атм. Чтобы определить, какой прибор вам нужен, посмотрите требования к подключению оборудования, установленного в доме. Чаще всего производитель указывает их в техническом паспорте или специальной табличке, установленной на задней панели.

Вторым важным параметром при выборе считается рабочая температура РДВ. Устройства, рассчитанные на температурный режим 0–40 ºС, можно использовать только при использовании в системах с холодной водой. Если вам нужен прибор на «горячий» водопровод, выбирайте прибор, работающий в диапазоне до 130 ºС.

Материал и качество изготовления

Как и другая водопроводная арматура, регуляторы давления должны изготавливаться из прочных металлов и сплавов – стали, латуни, бронзы и т. д. Кроме того, сплавы, включающие железо, должны иметь в составе лигатуры с антикорродирующими свойствами. На практике в торговых сетях можно найти как очень достойные изделия, отличающиеся высоким качеством изготовления, так и откровенный хлам. «Отделить зерно от плевел» несложно благодаря двум критериям – цене и массе. Во-первых, хорошая вещь не может стоить дёшево, а во-вторых, возьмите в руки сравниваемые изделия и выберите тот, вес которого отличается в большую сторону. Кроме того, обязательно обращайте внимание на качество литья. Помните о том, что хороший производитель никогда не выпустит за территорию своих цехов изделие с раковинами или облоем на стенках.

Способы устранения неисправностей

‘; } ?>
Работы по устранению неполадок могут быть простыми и сложными. В первом случае бывает достаточно заменить картриджи в фильтре и устранить протечки. Второй вариант предполагает выполнение дальнейших мероприятий, если простые меры не дали результата. В этом случае важно знать, как настроить гидрофор.

К более сложным действиям по устранению неполадок в работе насосного оборудования относится настройка давления в гидробаке и регулировка реле давления. При этом необходимо знать, какое давление должно быть в станции водоснабжения.

Существует несколько неполадок в работе бытовой насосной станции, которые можно попытаться устранить самостоятельно.

Нарушение работы двигателя

Если при проведении осмотра обнаружена остановка двигателя и отсутствие характерных шумов, то можно говорить о следующем:

  • Нет подключения к электрической сети или отмечается слишком низкое напряжение. Решением проблемы является проверка схему подключения оборудования.
  • Перегорание предохранителя. В этом случае требуется замена элемента.
  • Заклинило крыльчатку. Затруднительный поворот крыльчатки свидетельствует о том, что ее заклинило, поэтому в первую очередь нужно выяснить, что стало причиной такой ситуации.
  • Поврежденное реле. Решением подобной неисправности станет регулировка реле или его полная замена, для чего необходимо знать устройство реле давления насосной станции.

Не стоит думать, что неисправности в работе двигателя можно всегда устранить самостоятельно. В большинстве случае проблемы способны решить только специалисты из сервисного центра.

Настройка реле давления насосной станции своими руками

Особенности регулировки

Регулировка реле необходима в тех случаях, когда требуется выставлять уровни верхнего и нижнего давления в определенных значениях.

Тогда процесс регулировки будет состоять в следующем:

  1. Включают насос и закачивают жидкость в бак со значением давления на манометре 3 атмосферы, затем отключают насос.
  2. Крышку реле открывают и потихоньку вращают малую гайку, пока не сработает реле. Вращая гайку по часовой стрелке, увеличивают давление, вращая в обратную сторону, уменьшают. Выставляют верхний уровень на 3 атмосферы.
  3. Открывают кран и сливают воду из бака со значением давления на манометре 1,7 атмосферы, закрывают кран.

Крышку реле открывают и потихоньку вращают большую гайку до срабатывания контактов. Выставляют нижний уровень на 1,7 атмосферы. Необходимо, чтобы он был немного больше, чем давление воздуха в баке.

Реле давления воды продается в специализированных магазинах

Неудобства могут возникнуть из-за значительного перепада давления, в случае если бак полный или пустой. Разборка безбашенки типа «Вихрь» несложная. Конструкция простая, и есть инструкция по работе. Останется только добавить рабочее давление и почистить все в бачке. Поднять уровень лучше автоматической установкой.

Устройство и принцип работы

Электромеханические реле состоят из пластмассового корпуса, пружинного блока и контактов, управление которыми осуществляется с помощью мембраны. Мембрана имеет непосредственный контакт с напорной трубой и представляет собой тонкую пластинку, которая играет роль элемента восприятия. Она мгновенно реагирует на изменение уровня давления в трубопроводе, что влечёт за собой попеременное включение контактов. Пружинный блок водяного реле состоит из 2 элементов. Первый представляет собой пружину, контролирующую минимально допустимый уровень давления, и отвечает за сдерживание основного натиска воды. Нижний предел давления регулируется с помощью специальной гайки. Второй элемент представлен пружиной контроля за верхним давлением, и также регулируется при помощи гайки.

Принцип работы реле состоит в том, что контакты, благодаря мембране, реагируют на колебания давления, и при их смыкании насосы начинают перекачивать воду. В то время как при их размыкании происходит разрыв электрической цепи, питание насосного оборудования отключается и принудительная подача воды прекращается. Происходит это из-за того, что реле имеет соединение с гидроаккумулятором, внутри которого находится вода со сжатым воздухом. Соприкосновение этих двух сред происходит благодаря гибкой пластинке.

При включённом насосе вода, находящаяся внутри резервуара, давит через мембрану на воздух, в результате чего в камере резервуара создаётся определённое давление. При расходовании воды, её количество уменьшается и давление понижается. Помимо стандартной комплектации, некоторые модели могут оборудоваться кнопкой принудительного (сухого) пуска, индикатором работы, устройством плавного запуска и специальными разъёмами, используемыми вместо традиционных клемм.

Обычно в качестве верхнего порога берут показатель в 2,6 атмосферы, и как только давление доходит до этого значения – насос выключается. Нижний показатель выставляют на отметке 1,3 атмосферы, и при достижении давлением этого предела – насос включается. Если правильно выставить оба порога сопротивления, то работа насоса будет проходить в автоматическом режиме, и ручное управление не потребуется. Это избавит от необходимости постоянного присутствия человека и обеспечит бесперебойную подачу водопроводной воды потребителю. Реле не требует специального дорогостоящего обслуживания. Единственной процедурой, которую потребуется время от времени выполнять, является чистка контактов, которые во время работы окисляются и требуют ухода.

Помимо электромеханических моделей, существуют и электронные аналоги, которые отличаются более точной регулировкой и эстетичным видом. Каждое изделие снабжено контроллером протока – устройством, моментально отключающим насосное оборудование при отсутствии в трубопроводе воды. Благодаря такой опции насос надёжно защищён от работы на «сухом ходу», что предотвращает его перегрев и преждевременный выход из строя. Кроме того, электронное реле оборудовано небольшим гидробаком, объём которого обычно не превышает 400 мл.

Благодаря такой конструкции система получает надёжную защиту от гидроударов, что значительно продлевает срок службы как самих реле, так и насосов. Помимо большого числа преимуществ, у электронных моделей есть и слабые стороны. К минусам изделий относят высокую стоимость и повышенную чувствительность к качеству водопроводной воды. Однако, затраченные деньги быстро окупаются надёжностью и долговечностью приборов, а особая чувствительность устраняется путём установки системы фильтрации.

Таким образом, реле давления является неотъемлемым компонентом глубинного или скважинного насосного оборудования, способствует наполнению гидробака и поддержанию нормального давления в сети без помощи человека. Использование реле позволяет полностью автоматизировать процесс подачи воды и избавляет от необходимости включать насос самостоятельно при снижении давления или опустошении накопительного резервуара.

Определение необходимого давления

Внутри накопителя есть резиновая емкость, в которую накачивают воду, и камера для воздуха. От давления в ней зависит работа всей системы. Для проверки показателей в воздушном отсеке сначала освобождают резервуар от воды.

В него нагнетают воздух, давление которого меньше нижнего значения для указанного оборудования на 10%:

  • если объем резервуара 20-30 л – 1,4-1,7 атм;
  • 50-100 л – 1,8-1,9 атм.

После того как определили давление, резиновую грушу обязательно заполняют водой, иначе она пересохнет или слипнется. Для увеличения срока работы мембраны напор должен быть ниже его минимального уровня в водопроводе на 0,1-0,2 атм.

Выбор давления влияет на качество работы оборудования.

Нестандартные значения

Иногда могут потребоваться не такие настройки, как рекомендует производитель. Часто владельцы увеличивают разницу между напором включения и отключения.

Это позволяет насосу реже срабатывать, поэтому срок его службы увеличивается. Принимая такое решение, надо быть готовым к тому, что давление в водопроводе будет неравномерным. Уменьшение разницы приводит к постоянному напору, но станция чаще включается/выключается.

Верхний и нижний порог

При заводской регулировке гидронасосов выставляют средние значения:

  • нижняя граница – 1,5-1,8 бар;
  • верхний уровень – 2,4-3 бар.

Для правильной работы системы разница давлений должна быть от 1,4 атм и выше.

При самостоятельном выставлении этих параметров есть некоторые ограничения:

  1. Верхний порог настраивают на показатель, не превышающий 80% максимального значения для данной модели. В документах чаще всего такие характеристики не указывают. Для бытовых моделей этот показатель 5 атм. Чтобы создать более высокое давление, приобретают реле большей мощности.
  2. Перед проведением регулировки сверяются с характеристиками помпы. Чтобы она служила долго, отключение должно происходить, когда значение напора будет ниже верхнего предела на 0,2 атм.

Выполняя настройки, учитывают, что реле – чувствительное оборудование, и один поворот гайки соответствует примерно 0,6-0,8 атм.

Заводские настройки реле нуждаются в корректировке.

Практические примеры настройки реле

Разберем случаи, когда обращение к регулировке реле давления действительно необходимо. Обычно это происходит при покупке нового прибора или при возникновении частых отключений насоса. Также настройка потребуется, если вам досталось б/у устройство со сбитым параметрами.

Подключение нового прибора

На этом этапе следует проверить, насколько корректны заводские установки, и при необходимости внести некоторые изменения в работу насоса.

Галерея изображений Фото из Отключаем энергию, полностью опустошаем систему от воды, пока манометр не достигнет отметки «ноль». Включаем насос и следим за показаниями. Запоминаем, на каком значении он выключился. Затем спускаем воду и запоминаем параметры, при которых насос вновь начинает работать

Закручиваем большую пружину, чтобы увеличить нижнюю границу. Производим проверку: спускаем воду и запоминаем значение включения и выключения. Второй параметр должен увеличиться вместе с первым. Регулируем до тех пор, пока не достигаем нужного результата

Производим те же самые действия, но уже с малой пружиной. Действовать нужно аккуратно, так как малейшее изменение положения пружины откликается в работе насоса. Немного закрутив или ослабив гайку, тут же проверяем результат работы

Закончив все манипуляции с пружинами, снимаем конечные показания и сравниваем их с начальными. Также смотрим, что изменилось в работе станции. Если бак стал наполняться в другом объеме, а интервалы включения/выключения изменились, настройка прошла успешно

Этап 1 – подготовка оборудования

Этап 2 – регулировка величины включения

Этап 3 – регулировка величины отключения

Этап 4 – тестирование работы системы

Чтобы проследить за ходом работы, рекомендуется записывать все полученные данные на листок бумаги. В дальнейшем можно вернуть начальные настройки или еще раз изменить параметры.

Насос перестал выключаться

В этом случае принудительно выключаем насосное оборудование и действуем в следующем порядке:

  1. Производим включение, и дожидаемся, когда давление достигает максимальной отметки – предположим, 3,7 атм.
  2. Отключаем оборудование и понижаем давление путем спуска воды – например, до 3,1 атм.
  3. Слегка затягиваем гайку на малой пружине, увеличивая значение дифференциала.
  4. Проверяем, как изменилось давление отключения и тестируем систему.
  5. Настраиваем оптимальный вариант путем подтягивания и ослабления гаек на обеих пружинах.

Если причина была в неправильной первоначальной настройке, ее можно решить, не покупая новое реле. Рекомендуется регулярно, раз в 1-2 месяца, проверять работу реле давления и при необходимости производить регулировку пределов включения/выключения.

Ситуации, не требующие регулировки

Причин, когда насос не выключается или не включается, может быть множество – от засора в коммуникациях до выхода из строя двигателя. Поэтому, прежде чем начать разборку реле, следует убедиться, что остальное оборудование насосной станции работает исправно.

Если с остальными приборами все в порядке, проблема в автоматике. Переходим к осмотру реле давления. Отключаем его от штуцера и проводов, снимаем крышку и проверяем две критические точки: тонкий патрубок подключения к системе и блок контактов.

Галерея изображений Фото из Чтобы проверить, чистое ли отверстие, необходимо произвести демонтаж прибора для осмотра, а при обнаружении засорения выполнить чистку

Качество водопроводной воды не идеально, поэтому часто проблема решается обыкновенной чисткой входного отверстия от ржавчины и минеральных отложений

Даже у приборов с высокой степенью защиты от влаги могут происходить сбои из-за того, что окислились или подгорели контакты проводов

Для очищения контактов используют специальный химический раствор или простейший вариант – самую мелкую наждачку

Действовать нужно очень осторожно

Забился патрубок подключения к гидробаку

Чистка входного отверстия в реле

Засорились электрические контакты

Чистка блока контактов. Если очистительные мероприятия не помогли, а регулировка положения пружин также была напрасной, скорее всего, реле не подлежит дальнейшей эксплуатации и его следует заменить новым

Если очистительные мероприятия не помогли, а регулировка положения пружин также была напрасной, скорее всего, реле не подлежит дальнейшей эксплуатации и его следует заменить новым.

Предположим, вам в руки попал старый, но действующий прибор. Его регулировка происходит в том же порядке, что и настройка нового реле. Перед началом работы убедитесь в целостности прибора, разберите его и проверьте, все ли контакты и пружины на своих местах.

Подключение и настройка реле давления воды

В первую очередь реле давления гидроаккумулятора необходимо присоединить к трубопроводу, навинтив его на патрубок с резьбой (обычно ¼ дюйма).

Удобнее всего для подсоединения реле, манометра и гидроаккумулятора использовать так называемый пятивыводной штуцер, представляющий собой расширяющуюся с одной стороны трубку с тремя отводами.

Если такой детали в наличии нет, для каждого из перечисленных элементов придется врезать тройник или вваривать отвод.

При навинчивании реле вращать его приходится целиком (гайка жестко зафиксирована), поэтому следует заблаговременно позаботиться о том, чтобы оно при этом ни во что не упиралось.

Чтобы вода не просачивалась через резьбовое соединение, его нужно герметизировать. Обычно для этого применяют намотку из пакли, сантехнического льна или фум-ленты. При отсутствии практики на этом этапе могут возникнуть затруднения. Уплотнитель может проскальзывать и сбиваться в жмуты, но самое сложное – подобрать его оптимальное количество.

При недостатке льна или пакли ничего страшного не случится – при включении насоса соединение даст течь и его просто нужно будет переделать, добавив немного уплотнителя.

Реле давления с гидроаккумулятором в сборке

А вот при избытке данного материала гайка реле может лопнуть. Если вы чувствуете себя неуверенно в вопросах устройства резьбовых соединений, воспользуйтесь уплотняющей нитью «Тангет Унилок». Она обходится дороже обычной обмотки, но зато проще в применении и даже при чрезмерном количестве не вызывает разрушения навинчиваемой детали. В каждой упаковке имеется подробная инструкция по применению данного уплотнителя.

Намотку нити «Тангет Унилок» следует начинать не от торца патрубка, а от той точки на резьбе, до которой предполагается навинтить гайку, то есть двигаться нужно к торцу. Материал следует укладывать по часовой стрелке (если смотреть с торца патрубка), причем первая петля наматывается так, чтобы нить прижимала сама себя.

Выбор датчика давления воды для насоса (блока управления)

При выборе блока управления для водоснабжения обращают внимание на следующее:

  • значение рабочего давления должно быть равным, но лучше должно несколько превышать таковое в системе;
  • пороговые величины сработки должны укладываться в диапазон (мин./макс.) мПа трубопровода с запасом;
  • параметры тока, напряжения должны соответствовать сети. Обычно потребуется только учесть фазность;
  • температурный режим. Есть изделия, не работающие при t° ниже +5° C и при превышении влажностью 70%;
  • есть модели с обратным клапаном, манометром, встроенным датчиком холостого хода (в ЭРД почти всегда, в электромеханике — не во всех моделях). Конечно же, такие экземпляры лучшие, более продвинутые;
  • второстепенные параметры: пыле- и влагозащищенность (минимум IP 44, а лучше 54, 65), тип резьбы (впрочем, можно подобрать переходники), вес и габариты.

Пример параметров электронного контроллера давления воды:

Ниже несколько советов по выбору:

Обзор популярных моделей

Реле давления бывают двух видов: механические и электронные, последние намного дороже и редко применяются. На рынке представлен широкий ассортимент приборов от отечественного и зарубежного производителя, облегчающий выбор необходимой модели.

РДМ-5 Джилекс (15 у. е.) — наиболее популярная качественная модель от отечественного производителя.

Характеристики

  • диапазон: 1,0 — 4,6 атм.;
  • минимальный перепад: 1 атм.;
  • рабочий ток: максимум 10 А.;
  • класс защиты: IP 44;
  • заводские настройки: 1,4 атм. и 2,8 атм.

Genebre 3781 1/4″ (10 у.е.) — бюджетная модель испанского производства.

Характеристики

  • материал корпуса: пластик;
  • давление: верхнее 10 атм.;
  • соединение: резьбовое 1.4дюйма;
  • вес: 0,4 кг.

Italtecnica PM/5-3W (13 у. е.) — недорогое устройство итальянского производителя со встроенным манометром.

Характеристики

  • максимальный ток: 12А;
  • рабочее давление: максимум 5 атм.;
  • нижнее: диапазон регулировки 1 — 2,5 атм.;
  • верхнее: диапазон 1,8 — 4,5 атм.

Реле давления — важнейший элемент в системе водозабора, обеспечивающий автоматическое индивидуальное водоснабжение дома. Оно размещается рядом с гидроаккумулятором, режим работы задается посредством регулировочных винтов внутри корпуса.

При организации автономного водоснабжения в частном доме для подъема воды используют насосное оборудование. Чтобы подача воды была стабильной, необходимо подбирать его правильно, так как каждый вид обладает своими техническими характеристиками и особенностями.

Для эффективной и безаварийной работы насоса и всей системы водоснабжения необходимо приобрести и установить комплект автоматики для насоса , учитывая характеристики колодца или скважины, уровень воды и ее предполагаемый расход.

Вибрационный насос выбирают, когда количество потраченной за сутки воды не превышает 1 кубометра. Он недорого стоит, при эксплуатации и обслуживании не создает проблем, ремонт его прост. Но если воды потребляется от 1 до 4 кубометров или воды находится на расстоянии 50 м – лучше приобрести центробежную модель.

Обычно в комплект входят:

  • рабочее реле, которое отвечает за подачу и блокировку напряжения на насосе в момент опустошения или заполнения системы; устройство может быть сразу настроено на заводе, допускается и самостоятельная настройка для конкретных условий:
  • коллектор, подающий и распределяющий воду по всем точкам потребления;
  • манометр для проведения замеров давления.

Производители предлагают готовые насосные станции, адаптированные под определенные требования, но самостоятельно собранная система будет работать наиболее эффективно. Система также оснащается датчиком, блокирующим ее работу во время сухого хода: он отключает двигатель от питания.

Обеспечивают безопасность работы оборудования датчики защиты от перегрузки и целостности магистрального трубопровода, а также регулятор мощности.

Коротко о главном

РД – устройство, регулирующее наибольший и наименьший пороги переключения, которые отвечают за активацию помпы для принудительной подкачки воды.

РД бывают механическими и электронными. Последние стоят в 2-3 раза дороже и имеют ряд преимуществ перед механическими аналогами. В частности, электронные реле проще и удобнее настраивать, также они обладают более высокой точностью. Хотя принцип работы обоих типов РД одинаковый.

Регулировка РД осуществляется в соответствие с целями, с которыми будет использован водопровод в доме. Для принятия ванной достаточно поддержания в водопроводной системе низкого уровня давления. Для работы джакузи или гидромассажа понадобится поддерживать высокое среднее давление.

Реле давления насосной станции

Датчик в автоматическом порядке регулирует процесс откачки воды в системе. Именно реле давления отвечает за включение и отключение насосного оборудования. Он же контролирует уровень напора воды. Встречаются механические и электронные элементы.

Механические реле

Устройства такого плана отличаются простой и вместе с тем надёжной конструкцией. Они гораздо реже выходят из строя, чем электронные аналоги, потому как в механических реле перегорать попросту нечему. Регулировка происходит посредством смены натяжения пружин.

Механическое реле давление регулируется натяжением пружин

Механическое реле включает в себя пластину из металла, где закреплена контактная группа. Здесь же находятся клеммы для подключения устройства и пружины для регулировки. Нижняя часть реле отведена под мембрану и поршень. Конструкция датчика достаточно проста, поэтому с самостоятельной разборкой и анализом повреждений серьёзных проблем возникнуть не должно.

Электронные реле

Подобные устройства привлекают в первую очередь удобством пользования и своей точностью. Шаг электронного реле заметно меньше, чем механического, а значит, вариантов регулировки здесь больше. Но электроника, в особенности бюджетная, часто ломается. Поэтому излишняя экономия в этом случае нецелесообразна.

Электронное реле давления воды

Ещё одно явное преимущество электронного реле – это защита техники от холостого хода. Когда напор воды в магистрали будет минимальным, элемент некоторое время будет продолжать работать. Такой подход позволяет защитить основные узлы станции. Отремонтировать электронное реле своими силами гораздо сложнее: кроме технических знаний необходим специфический инструмент. Поэтому диагностику и обслуживание датчика лучше предоставить профессионалам.

Характеристики устройства

В зависимости от модели станции и её типа устройство может располагаться как внутри корпуса, так и крепиться снаружи. То есть, если оборудование идёт без реле, или его функционал не устраивает пользователя, то всегда есть возможность подобрать элемент в отдельном порядке.

Датчики также различаются по максимально допустимому давлению. Добрая половина классических реле настроены на 1,5 атм для запуска системы и 2,5 атм на её деактивацию. Мощные бытовые модели имеют порог в 5 атм.

Когда речь идёт о внешнем элементе, то здесь крайне важно учесть характеристики насосной станции. Если оперировать слишком высоким давлением, то система может не выдержать, и как следствие появятся протечки, разрывы и скорый износ мембраны

Поэтому так важно отрегулировать реле именно с оглядкой на критичные показатели станции.

Особенности работы

Рассмотрим принцип работы устройства на примере одного из самых распространённых реле для насосных станций – РМ-5. В продаже также можно встретить зарубежные аналоги и более продвинутые решения. Подобные модели укомплектованы дополнительной защитой и предлагают расширенные функциональные возможности.

РМ-5 включает в себя подвижную металлическую основу и пару пружин с двух сторон. Мембрана в зависимости от давления двигает пластину. Посредством прижимного болта можно отрегулировать минимальные и максимальные показатели, при которых техника включается или отключается. РМ-5 оснащён обратным клапаном, поэтому вода при деактивации насосной станции не сливается обратно в скважину или колодец.

Поэтапный разбор работы датчика давления:

  1. По открытию крана вода начинает поступать из бака.
  2. По мере убывания жидкости в насосной станции давление постепенно снижается.
  3. Мембрана воздействует на поршень, а он в свою очередь замыкает контакты, включая технику.
  4. По закрытию крана бак наполняется водой.
  5. Как только показатель давления достигает максимальных значений, оборудование отключается.

От имеющихся установок зависит периодичность работы насоса: как часто он будет включаться и отключаться, а также уровень давления. Чем меньше промежуток между запуском и деактивацией оборудования, тем дольше прослужат основные узлы системы и вся техника в целом. Поэтому так важна грамотная регулировка реле давления.

Но на работу оборудования влияет не только датчик. Случается, что устройство настроено правильно, но другие элементы станции сводят на нет работу всей системы. К примеру, проблема может быть из-за неисправного двигателя или засора коммуникаций. Поэтому к осмотру реле стоит подходить после диагностики основных элементов, особенно если речь идёт о механических датчиках. В доброй половине случаев для устранения проблем с разбросом давления достаточно почистить реле от скопившейся грязи: пружины, пластины и контактные группы.

Список частых поломок

К характерным причинам неполадок в автоматике относятся:

  • подгоревшие контакты;
  • солевые отложения на спиралях;
  • засор и ржавчина гидравлического входа;
  • попадание в мембранный отсек песка, других инородных частиц и образование отложений;
  • неправильные механические настройки автоматики.

Еще одной причиной сбоя с прокачкой воды, не связанной напрямую с неисправностью самого реле, могут быть скачки напряжения в электросети.

Почему не работает и что с этим делать?

Если диагностика показала, что сама насосная станция исправна, то тогда следует обратить внимание непосредственно на реле давления. Алгоритм действий будет зависеть от того, как проявляется неисправность этого блока

Часто срабатывает

При стабильном давлении в гидробаке, главная причина самопроизвольных частых включений насоса — сбой настроек автоматики. Для регулировок к системе должен быть подключен манометр.

Наиболее востребовано в местном водоснабжении реле РДМ-5, с предустановленными настройками порогов срабатывания:

  • нижнее давление — 1,4 атм.,
  • верхнее — 2,8 атм.

Пошагово, это стандартное реле регулируется так:

  1. Снять крышку блока.
  2. Правым вращением гайки пружины большего размера поднять до нужного, например 3,8 атм. , давление отключения. При этом поднимется и нижняя граница запуска.
  3. Левым вращением регулятора меньшей спирали установить нужную дельту давлений.

Спирали, особенно меньшая, очень восприимчивы к регулировкам, поэтому настраивать их следует очень аккуратно, с постепенным, по 45о оборотами закручиванием гаек.

Не отключает насос

К самым распространенным причинам несрабатывания реле на отключение насоса относятся:

  • Залипание и в, тяжелых случаях при мощных пусковых токах, оплавление контактов прерывателя. Если контакты не повреждены, то дефект устраняется их зачисткой тонкозернистой наждачкой, мелким надфилем или пилкой для ногтей.
  • Завышен перепад между порогами срабатывания реле. Следует выставить рекомендованные производителем или оптимальные для конкретного насоса настройки.

Желательно поддерживать дельту давлений в интервале от 1,2 до 1,6 атм.

Щелкает и часто отключается

На практике можно встретиться с еще одной неисправностью блока автоматики, отвечающего за давление воды, — периодическое щелкание.

Если причина не связана, как описывалось выше, с поломкой в самой системе водоснабжения, (чаще – завоздушивание) или отсутствие давления в гидробаке (порвана мембрана), значит дело в автоматике.

Обобщив многочисленные мнения по этой проблеме на форумах инженерной тематики, можно сделать вывод, что имеется только один возможный вариант ее решения — попытаться устранить частое срабатывание автоматики (щелкание) увеличением разницы порогов срабатывания реле.

Если проблема этим не решается, то — только замена блока.

Просто не срабатывает

Реле может не замыкается на включение по следующим причинам:

  1. Недостаточное напряжение в сети — автоматика требовательна к этому параметру.
  2. Окисление контактной группы — необходимо разобрать устройство и почистить контакты.
  3. Установлен завышенный предел давления отключения автоматики.
  4. Известковые и прочие отложения в пятивыводном штуцере с манометром, подключающем реле к насосу (пятернике), или забито отверстие мембранного отсека — необходимо снять реле и почистить деталь.
  5. Попадание песка в мембранную часть блока, что мешает воздействию диафрагмы на поршень. Последнее часто наблюдается, если насос закачал песок. Необходимо разобрать реле, аккуратно все вычистить и промыть.

Как отрегулировать давление насосной станции (безбашенки)

Главная » Водоснабжение

На чтение: 6 минОпубликовано:

Содержание

  1. Какой узел насосной станции отвечает за регулировку давления
  2. Чем регулировать?
  3. Регулировка реле насосной станции
  4. Как отрегулировать самому?
  5. Как уменьшить или увеличить «нижнее» и «верхнее»
  6. Как изменить «верхнее» не изменяя «нижнее»
  7. На что следует обратить внимание
  8. Давление воздуха в гидроаккумуляторе насосной станции
  9. Как замерить и подкачать воздух?
  10. Видео по теме

Если вы приобрели насосную станцию, то изначально она уже имеет так называемые заводские установки давления включения (нижнее) и выключения (верхнее) её насоса, которые и определяют давление воды в системе водоснабжения дома.

Но иногда они не устраивают – их необходимо увеличить или уменьшить. Поэтому, в данной статье мы рассмотрим, как отрегулировать давление насосной станции своими руками.

Какой узел насосной станции отвечает за регулировку давления

Стандартная насосная станция для водоснабжения дома или дачи(по другому её еще называют «безбашенка») состоит из нескольких основных узлов: насос, гидроаккумуляторный бак, манометр, реле, соединительные элементы (переходники, патрубки).

Кроме этого, она может быть укомплектована дополнительными опциями: защитой от «сухого хода», защитой от перегрева, фильтром.

Чем регулировать?

Давление воды регулируется специальным реле, которое так и называется – «реле давления» и обязательно входит в комплект любой насосной станции. С помощью него насос отключается при достижении максимального заданного его значения и включается при его снижении до определенного уровня.

Большинство реле, которыми снабжены современные бытовые насосные станции представляют собой металлическое основание на котором смонтированы два пружинных регулятора: большой — с обозначением «–Р+» и меньший — с обозначением «-∆Р+». Кроме регуляторов там установлены клеммы для подсоединения насоса, сети 220 V и заземления, а также контактная группа.

Все это сверху закрывается пластиковой крышкой. Снизу в основании реле установлена мембрана, которая закрыта фланцем соединительного патрубка, обычно выполненного в виде быстросъемного соединения («американки») и с помощью которого оно крепится к переходнику насосной станции.

Регулировка реле насосной станции

Большинство реле имеют отрегулированные заводские установки давления в пределах: «нижнее» (включения) – 1,4-1,6 бар (атм.) и «верхнее» (выключения) 2,8-3,2 бар. Максимальное, на которые рассчитаны большинство реле, составляет 5-5,5 бар (атм.). Эти данные можно найти в его инструкции по эксплуатации, паспорте или на упаковке.

На фото: 1 — корпус реле; 2 — крышка; 3 — винт крепления крышки; 4 — регулятор «-Р+»; 5 — регулятор «-∆Р+»; 6 — клеммы подключения насоса; 7 — клеммы 220V; 8 — заземление.

Как отрегулировать самому?

Но иногда заводские установки по тем или иным причинам не устраивают. Как отрегулировать реле давления насосной станции самому, уменьшить или увеличить его? Ничего сложного здесь нет.
Первое, что необходимо сделать — отключить безбашенку от питания. После этого нужно снять пластиковую крышку с реле. В зависимости от модели и производителя, для этого может понадобиться отвертка или ключ 8х10. Сняв крышку, мы увидим два пружинных регулятора.

Как уменьшить или увеличить «нижнее» и «верхнее»

Если необходимо увеличить давление насосной станции, то гайку регулятора с обозначением «-Р+» (обычно он больше) закручиваем по часовой стрелке. Сначала будет достаточно закрутить на один оборот.

После этого закрыть реле крышкой, включить станцию и по манометру определить давление в момент отключения насоса. Если давление увеличилось на достаточную величину, то регулировка на этом может быть закончена, если же оно меньше или больше, чем планировалось, то повторяем регулировку еще.

Соответственно, для того, чтобы уменьшить давление насосной станции необходимо поворачивать гайку регулятора против часовой стрелки (в сторону «-«). Стоит отметить, что при таком регулировании будет одновременно увеличиваться как давление включения, так и давление отключения насоса.

Как изменить «верхнее» не изменяя «нижнее»

Для того чтобы изменить разницу между «верхним» и «нижним» давлением служит другой регулятор (-∆Р+). Здесь тоже все просто: если необходимо увеличить разницу, то гайку необходимо закрутить, а если уменьшить – открутить.

При этом «нижнее» будет оставаться неизменным, а будет изменяться только «верхнее» (отключения насоса). Момент отключения и включения также контролируется по манометру. Если разница между давлениями включения и выключения будет больше, то насос будет включаться реже, а если меньше – то чаще. Хотя это еще зависит и от объема гидроаккумуляторного бака.

На что следует обратить внимание

Следует обратить внимание на то, что нельзя закручивать очень сильно или до упора оба или один из регуляторов – реле может перестать срабатывать. К тому же, не желательно увеличивать давление больше чем 80% максимального, на которое рассчитано реле по паспорту, это тоже может привести к его поломке.

Так, если реле рассчитано на максимальное 5 бар, то наибольшее давление (отключения насоса), которое можно устанавливать в системе: 5Х0,8=4 бар. Если в вашей системе водоснабжения вы намерены установить большее давление, то придется поискать реле с более высоким максимальным давлением.

Кроме того, собираясь увеличить давление насосной станции с помощью регулировки ее реле, необходимо проверить по графику ее характеристик сможет ли она развивать такое давление при определенном расходе и уровне поднятия воды (приблизительно 10 м водяного столба равняется 1 бар (атм.). Если, например, насос станции может развить давление только 3 атм. (30 м вод.ст.), то нет смысла регулировать реле на большее давление, потому что в этом случае он будет работать не выключаясь и все равно такого давления не достигнет.

Необходимо также учесть еще один момент. Если вы отрегулировали реле на отключение насоса на 3,5 атм. (бар), то такое давление будет на уровне расположения станции, а если точка забора (сантехническое устройство) находится выше, например, на втором этаже, то там оно будет меньше на разницу высоты из расчета: 1 м высоты — 0,1 бар.

После того, как вы отрегулировали давление насосной станции, необходимо подкорректировать и величину его в её гидроаккумуляторном баке.

Давление воздуха в гидроаккумуляторе насосной станции

Обычно давление воздуха в новом гидроаккумуляторном баке находится на уровне 1,5 бар (атм.). Оптимальным считается такое, которое на 5-10% ниже давления включения насоса. Если оно будет меньшим, то будет сильно растягиваться мембрана («груша»), если большим, то в баке будет меньший запас воды. То есть, если вы увеличили давление включения до 2 бар, то и в баке его необходимо увеличить, подкачав до 1,8 бар, и наоборот.

Как замерить и подкачать воздух?

Если безбашенка уже установлена и работает, то перед замерами и при накачивании воздуха необходимо обязательно выключить её и снизить до 0 давление в системе водоснабжения — открыть кран и подождать пока вода не перестанет вытекать.

Замерить давление воздуха в гидроаккумуляторе можно с помощью обычного автомобильного манометра, через штуцер с золотником, который находится на торце бака под пластиковой крышкой. Подкачивать воздух удобнее всего насосом или компрессором с манометром, чтобы сразу контролировать процесс.

Периодически необходимо проверять давление воздуха в баке, так как оно может уходить через золотник. Свидетельством падения или отсутствия его может быть более частое, чем раньше включение насоса или включение его сразу же после открывании крана.

Иногда случается, что при нажатии на золотник, из него начинает идти вода. Это свидетельствует о том, что повреждена резиновая мембрана – «груша» и ее необходимо заменить.

Видео по теме

 

 

 

Андрей

Строитель со стажем 20 лет. Знаю нюансы и подводные камни.

Задать вопрос

Мы стараемся рассматривать наибольшее количество подводных камней/нюансов при строительстве, но возможно остались вопросы.

 

Рейтинг

( Пока оценок нет )

Насосная станция

Управление потоком насоса

Один из методов заключается в том, чтобы гарантировать, что насос всегда соответствует требованиям к минимальному расходу, установив контур рециркуляции из резервуара, также называемый байпасной линией, оснащенный клапаном байпаса давления. Когда технологическая потребность низкая, производительность насоса по-прежнему будет соответствовать требованиям минимального расхода. Клапан, используемый в процессе, также может называться клапаном поддержания давления в насосе. На схеме справа показан обратный клапан Equilibar® (BPV), используемый в качестве перепускного клапана. BPV Equilibar General Service и Industrial Service отлично подходят для этих приложений.

Другим методом управления потоком насоса является использование насоса с приводом с переменной скоростью , который, в свою очередь, изменяет расход насоса.

Третий метод управления потоком от насоса заключается в дросселировании нагнетания путем открытия и закрытия клапана на выходе из насоса. В случае управления нагнетанием объемных насосов этот метод используется для предотвращения проскальзывания насоса (также называемого разгоном насоса) и имеет дополнительное преимущество в виде демпфирования пульсаций. На схеме справа показан регулирующий клапан Equilibar, соединенный последовательно с датчиком расхода, управляющим нагнетанием объемного питательного насоса.

Свяжитесь с нами Обратные клапаны Клапаны управления потоком

В случае насосов прямого вытеснения дросселирование давления на выходе насоса приводит к определенному расходу на основе характеристической кривой насоса . Этот метод описан ниже.

Простое управление потоком насоса для насосов прямого вытеснения

Часто для управления потоком насоса используется сложный ПИД-контур для электронного управления контуром на основе выходных данных расходомера. Модулирующий регулирующий элемент обычно представляет собой регулирующий клапан потока с выдвижным штоком или частотно-регулируемый привод на электродвигателе насоса. Хотя эти методы являются проверенным способом управления потоком насоса, существуют приложения, в которых такая настройка нежелательна. Например, для агрессивных сред может потребоваться технология расходомера, которая является непомерно дорогой. В этих случаях может быть предпочтительнее более простая схема управления потоком насоса с использованием регулятора обратного давления Equilibar.

Контур справа использует клапан обратного давления для регулирования скорости потока, выходящего из насоса, в соответствии с технологическим процессом. В насосе объемного типа, также называемом насосом с вращающимся рабочим колесом или центробежным насосом, выходной поток обратно пропорционален выходному давлению насоса. Когда выход давление насоса низкий, выход расход насоса высокий. Эта взаимосвязь между давлением на выходе насоса и расходом на выходе насоса показана на кривой производительности насоса, также называемой диаграммой P-V (см. график справа). Для каждого давления насос будет обеспечивать только один определенный расход. Таким образом, чтобы управлять потоком центробежного насоса, просто установите выходное давление в точку на диаграмме P-V, которая позволяет насосу обеспечивать желаемую скорость потока.

Давление на выходе насоса устанавливается с помощью регулятора обратного давления. После установки давления устанавливается скорость потока в процессе. Регулятор обратного давления (BPR) изолирует любые изменения, происходящие в системе, расположенной ниже по потоку, путем внесения корректировок, чтобы поддерживать давление на входе (давление на выходе насоса) на уровне заданной уставки.

Equilibar серии BD BPV из SS316L. Клапаны серии BD доступны с размерами труб от 1,5 до 4 дюймов и часто используются для управления потоком насосов

 

Equilibar BPV управляет потоком нагнетания насоса

Кривая зависимости давления насоса от производительности потока

Точное управление потоком с помощью регуляторов потока Equilibar

Уникальная технология Equilibar BPR особенно применима в этой схеме управления потоком. Эта технология предлагает множество преимуществ по сравнению с традиционными шаровыми или игольчатыми регулирующими клапанами с выдвижным штоком. В Equilibar в качестве единственной подвижной части используется гибкая диафрагменная мембрана. Эта конструкция устраняет трение, что позволяет клапану управления расходом Equilibar реагировать точно и с очень низким гистерезисом. Equilibar представляет собой конструкцию с пилотным управлением, в которой регулируемая скорость потока устанавливается путем приложения заданного давления сжатого газа к верхней стороне диафрагмы. Преимущества Equilibar:

  • Уникальная конструкция регулятора расхода Equilibar позволяет регулировать диапазон регулирования до 200 : 1, управлять очень малыми микропотоками, а также хорошо работает со смешанной газовой и жидкой фазами.
  • Может управлять потоком насоса с очень высоким разрешением. Мембрана без трения является единственной движущейся частью Equilibar и быстро реагирует на малейшие изменения расхода в системе или заданного давления пилота. .
  • Простая конструкция проста и недорога в обслуживании в полевых условиях.
Запросить цену

Видео показывает, как регулятор обратного давления может управлять потоком насоса

Нажмите на ссылку видео, чтобы увидеть регулятор обратного давления Equilibar, используемый для управления потоком насоса в инженерной лаборатории Equilibar. Насос центробежного типа с вращающимся рабочим колесом, используемый для подачи охлаждающей воды. В этом видео мы демонстрируем, что скорость потока от насоса повторяема, что позволяет вам снова и снова возвращаться к одной и той же скорости потока. Схема лабораторной установки показана справа.

 

Покомпонентное изображение клапана управления потоком Equilibar с несколькими отверстиями. Эта уникальная конструкция обеспечивает мгновенное управление без трения. Пилотное давление в куполе управляется электронным способом (не показано).

Загрузить брошюру

 

Схема эквилибарного регулятора противодавления в напорной линии насоса для управления потоком насоса, как показано в видео. В демонстрации вода возвращается в резервуар для хранения для уменьшения отходов, но не используется в качестве байпасной линии. Ручной клапан в линии рециркуляции имитирует ситуации потребности технологической системы.

Один из наших регуляторов серии BD идеально подходит для управления расходом вашего насоса.

 

Рабочие категории
  • Управление насосом
Рабочие теги
  • Управление насосом

Прокачка — MATLAB и Simulink

Перейти к содержимому

Основное содержание

Модели насосных систем в нескольких Домены Simscape Fluids

В этом разделе вы можете найти примеры насосные системы в нескольких Simscape Fluids домены. 3. Каждая насосная станция состоит из бака, двух параллельно установленных центробежных насосов и первичного двигателя, вращающегося со скоростью 1700 об/мин. Характеристики насоса задаются с помощью интерполяционных таблиц.

Система смазки

Упрощенная версия системы смазки с питанием от центробежного насоса. Система состоит из пяти основных блоков: насосного блока, блока продувки, коллектора теплообменника, коллектора форсунок и блока управления. И насос, и блок продувки построены вокруг центробежного насоса. Блок очистки собирает жидкость, выбрасываемую форсунками, и перекачивает ее обратно в резервуар насосного блока. Блок управления формирует команды на обход либо теплообменника, представленного в виде местного сопротивления, либо блока форсунок. В реальной системе эти команды генерируются датчиками температуры, установленными в смазочных полостях.

Система управления насосом с замкнутым контуром и гибким приводным валом

Типовая силовая установка, состоящая из насоса постоянной производительности, приводимого в движение двигателем через гибкую трансмиссию, и предохранительным клапаном. Переменное отверстие служит нагрузкой для системы.

Насос с редукционным клапаном и двумя нагрузками

Типовая силовая установка, состоящая из насоса постоянной производительности, приводимого в действие источником угловой скорости, предохранительного клапана, редукционного клапана и двух регулируемых диафрагм.

Гидравлический двигатель с приводом от насоса, чувствительного к нагрузке

Контур, оснащенный регулятором скорости, чувствительным к нагрузке, установленным между насосом и направляющим клапаном. В отличие от обычного регулятора скорости с расходомером, устройство измерения нагрузки автоматически регулирует выходное давление насоса таким образом, чтобы оно равнялось сумме заданного перепада давления на клапане управления потоком с компенсацией давления и давления, вызванного нагрузкой. Клапан сброса давления с пилотным управлением в блоке управления скоростью, чувствительной к нагрузке, состоит из блоков тарельчатого клапана и гидравлического привода клапана двойного действия.

Гидравлический двигатель с приводом от насоса переменной производительности, чувствительного к нагрузке

Контур, использующий блок измерения нагрузки и ограничения давления в традиционной возвратно-поступательной системе с переменной нагрузкой при прямом ходе. Устройство ограничивает выходное давление до 300 бар и поддерживает заданный перепад давления в 10 бар на дроссельном отверстии на выпускном отверстии насоса. Блок состоит из двух 3-ходовых 2-позиционных клапанов, двух приводов гидравлических клапанов одностороннего действия и одного привода гидравлических клапанов двойного действия.

Привод с обратной связью и насосом переменной производительности с компенсацией давления

Привод с обратной связью, который состоит из пропорционального 4-ходового распределителя, приводящего в движение гидравлический цилиндр двойного действия. Цилиндр приводит в движение груз, состоящий из массы, вязкого и кулоновского трения, постоянной силы и пружины. Привод приводится в действие насосом переменной производительности с компенсацией давления, приводимым в движение двигателем с постоянной скоростью. Трубопроводы между клапаном, цилиндром, насосом и баком моделируются с помощью блоков Hydraulic Pipeline.

Насос с редукционным клапаном и двумя нагрузками

Типовая силовая установка, состоящая из насоса постоянной производительности, приводимого в действие источником угловой скорости, предохранительного клапана, редукционного клапана и двух регулируемых диафрагм.

Приоритетный клапан, управляющий двумя гидравлическими двигателями

Трехходовой регулирующий клапан с компенсацией давления. Этот клапан поддерживает постоянную скорость потока через главный гидравлический двигатель, который соединен с компенсационным выходом клапана управления потоком. Он действует как приоритетный клапан, отводя избыточный поток к вспомогательному гидромотору, если основной гидромотор получает достаточно жидкости для поддержания заданной угловой скорости. Вспомогательный двигатель полностью отключается, если расхода недостаточно для питания основного гидравлического двигателя.

Гидравлический двигатель с приводом от насоса, чувствительного к нагрузке

Контур, оснащенный регулятором скорости, чувствительным к нагрузке, установленным между насосом и направляющим клапаном. В отличие от обычного регулятора скорости с расходомером, устройство измерения нагрузки автоматически регулирует выходное давление насоса таким образом, чтобы оно равнялось сумме заданного перепада давления на клапане управления потоком с компенсацией давления и давления, вызванного нагрузкой. Клапан сброса давления с пилотным управлением в блоке управления скоростью, чувствительной к нагрузке, состоит из блоков тарельчатого клапана и гидравлического привода клапана двойного действия.

Гидравлический двигатель с приводом от насоса переменной производительности, чувствительного к нагрузке

Контур, использующий блок измерения нагрузки и ограничения давления в традиционной возвратно-поступательной системе с переменной нагрузкой при прямом ходе. Устройство ограничивает выходное давление до 300 бар и поддерживает заданный перепад давления в 10 бар на дроссельном отверстии на выпускном отверстии насоса. Блок состоит из двух 3-ходовых 2-позиционных клапанов, двух приводов гидравлических клапанов одностороннего действия и одного привода гидравлических клапанов двойного действия.

Скважина со струйным насосом

Установка струйного насоса для скважины. Представленная в данном примере скважинная струйная насосная установка состоит из центробежного насоса, устанавливаемого на поверхность, и струйного насоса, установленных в скважине ниже поверхности воды.

Система подачи топлива для самолета с тремя баками

Представленная в примере система подачи топлива состоит из трех баков и двигателя. Питание двигателя осуществляется от центрального бака, а топливо из левого и правого бортовых баков перекачивается в центральный бак соответствующими насосными станциями. Каждая насосная станция состоит из двух центробежных насосов, включенных параллельно, с установленными на выходах насосов обратными клапанами для предотвращения обратного потока. Насосы приводятся в движение первичными двигателями с угловой скоростью 7200 об/мин. Движители моделируются с помощью идеального источника угловой скорости.

Три резервуара с постоянным напором

Классическая задача транспортировки жидкости: определить расход, давление и объем жидкости в системе, состоящей из трех резервуаров с постоянным напором. Резервуары расположены на разных отметках и соединены трубопроводами, объединенными в общий узел, расположенный на расстоянии 50 м от базовой плоскости. Время симуляции установлено на 50 секунд, что достаточно для того, чтобы системные переменные успокоились и достигли значений, близких к установившимся.

Героторный насос

Смоделируйте, задайте параметры и протестируйте героторный насос.

Гидравлический аксиально-поршневой двигатель

Аксиально-поршневой двигатель с испытательным жгутом. Чтобы повысить точность симуляции, в этой модели используется подробное представление двигателя, которое учитывает взаимодействие между поршнями, наклонной шайбой и тарелкой клапана.

Гидравлический аксиально-поршневой насос с регулированием по нагрузке и ограничению давления

Испытательный стенд, предназначенный для исследования взаимодействия аксиально-поршневого насоса и типичного блока управления, одновременно выполняющего функции измерения нагрузки и ограничения давления. Чтобы повысить точность симуляции, в этом примере используется подробная модель насоса, которая учитывает взаимодействие между поршнями, наклонной шайбой и пластиной клапана.

Система смазки

Упрощенная версия системы смазки с питанием от центробежного насоса. Система состоит из пяти основных блоков: насосного блока, блока продувки, коллектора теплообменника, коллектора форсунок и блока управления. И насос, и блок продувки построены вокруг центробежного насоса. Блок очистки собирает жидкость, выбрасываемую форсунками, и перекачивает ее обратно в резервуар насосного блока. Блок управления формирует команды на обход либо теплообменника, представленного в виде местного сопротивления, либо блока форсунок. В реальной системе эти команды генерируются датчиками температуры, установленными в смазочных полостях.

Выберите веб-сайт, чтобы получить переведенный контент, где он доступен, и ознакомиться с местными событиями и предложениями. В зависимости от вашего местоположения мы рекомендуем вам выбрать: .

Вы также можете выбрать веб-сайт из следующего списка:

Европа

Свяжитесь с местным офисом

  • Пробная версия ПО
  • Пробная версия ПО
  • Обновления продуктов
  • Обновления продуктов

Контроллеры насосных систем для управления утечками

Об авторе: Стивен Л. Фрейзур (Steven L. Frasure) является директором по водоснабжению компании Flowtronex PSI. С ним можно связаться по адресу [email protected].

Steven L. Frasure

undefined

Целью данной статьи является обсуждение использования насосных станций с регулируемым расходом в качестве метода снижения утечек в распределительной системе и, в качестве дополнительного преимущества, снижения затрат на электроэнергию, связанных с более традиционные системы постоянного давления. Несмотря на концептуальность, в этой статье в общих чертах обсуждаются контроллеры насосных станций, которые используются для отслеживания меняющихся требований к давлению в распределительных системах. Предвосхищая эти требования, основанные на расходе, современные контроллеры насосных систем могут обеспечить системы с плавным потоком, отвечающие минимальным требованиям к давлению.

Введение

Миллионы долларов налогов тратятся на очистку воды, чтобы сделать ее безопасной для потребления человеком. Еще миллионы тратятся на доставку той же воды в наши дома, школы, больницы и предприятия. Тем временем миллионы галлонов этой ценной очищенной воды теряются из-за утечки из-за избыточного давления.

Новые технологии открыли двери для новых и более эффективных методов управления распределением воды. Сегодня существуют тысячи и тысячи миль водопроводных распределительных систем, заполненных движущейся водой, которые можно предотвратить от утечек из-за избыточного давления.

Учитывая возраст национальных трубопроводных систем и огромную территорию, практически невозможно предотвратить все утечки. Обеспечение минимального давления воды во всех точках подключения в течение суток имеет важное значение для процесса обеспечения потребителей водой.

Но какое давление слишком много, а какое недостаточно?

Требования к расходу меняются в течение дня, что приводит к изменению требований к давлению. Традиционное решение — на всякий случай создать избыточное давление. Избыточное давление в системе является основной причиной, но часто игнорируемой проблемой утечки.

Было много дискуссий о решениях по уменьшению утечек. Одним из таких методов является снижение заданных значений давления в распределительной системе в периоды низкой нагрузки. Другим проверенным методом является установка клапана регулирования давления в зонах измерения для минимизации избыточного давления в периоды низкого расхода.

Принято считать, что регулирование давления нагнетания насосных станций существенно снижает утечку. Кроме того, новая технология позволяет регулировать давление насосной станции в соответствии с фактическим спросом. Другими словами, потребители получают то, что им нужно — ни больше, ни меньше.

Хотя неспециалист не является специалистом по проектированию распределительных систем или причинам утечек в распределительных сетях, неспециалист может оценить тот факт, что трубы с отверстиями не так эффективно удерживают воду, как трубы без отверстий. Кроме того, приложение давления к водопроводным трубам с отверстиями увеличит количество воды, вытекающей из отверстий. Увеличьте количество давления, и поток также увеличится.

Принято считать, что по мере увеличения давления количество утечек увеличивается. Также принято, что утечка воды может составлять от 10% до более 40% от общего объема подачи. Система производительностью один миллион галлонов в день может терять более 400 000 галлонов в сутки из-за утечек. В перспективе утечка 1/16 дюйма в трубе приведет к потерям более 100 галлонов в сутки.

Принимая во внимание затраты, связанные с утечкой и избыточным энергопотреблением, многие специалисты работают над способами решения этой проблемы. Текущая цель состоит в том, чтобы свести к минимуму избыточное давление, тем самым уменьшая утечку.

Критерии типовой системы распределения

На примере типичной системы распределения в этой статье рассматривается взаимосвязь между требуемым расходом и давлением в критической точке системы. Существует много действий, которые можно предпринять для уменьшения утечек из трубопровода. Однако в этой статье речь пойдет только о контроле давления нагнетания насосной станции.

Расход системы составляет 290 000 галлонов в сутки. Следует отметить, что этот пример не включает встроенный в систему приподнятый резервуар для хранения. Рельеф относительно плоский, труба изготовлена ​​из ковкого чугуна и имеет возраст около 15 лет. Потребители состоят в основном из домов среднего размера, школ, больниц и малых предприятий. Давление на входе или всасывании насосной станции составляет 40 фунтов на квадратный дюйм изб. и колеблется не более чем на 10 фунтов на кв. дюйм изб. вверх или вниз. Давление нагнетания регулируется клапанами регулирования давления на каждом нагнетании насоса, которые поддерживают постоянное давление 83 фунта на кв. дюйм. Минимальное допустимое давление в критической точке составляет 43 фунта на кв. дюйм изб. Примерная насосная станция состоит из двух основных насосов мощностью 10 л.с. и одного ведущего насоса мощностью 7,5 л.с., эффективность которых оценивается в 65%.

В типичной распределительной системе, начиная с полуночи, поток слабый и остается низким примерно до 4:00 утра. В следующие два часа поток увеличивается до максимального спроса в 6:00 утра. С 6:00 утра примерно до 17:00 поток снова падает. После 17:00 поток увеличивается до второго по величине спроса примерно в 20:00. После 20:00 скорость потока падает до самой низкой скорости незадолго до полуночи.

В этот момент цикл начинается снова.

Контроль давления на основе времени для управления утечками

В течение дня есть определенное время, когда потребность и требования к давлению относительно ниже и постоянны. Однако важно отметить, что в периоды низкого расхода обеспечиваемое давление намного выше, чем требуется для достижения минимума в критической точке.

Блоки времени, показанные на графике, представляют периоды времени, до которых давление насосной станции может быть снижено без риска падения давления ниже минимально допустимого уровня.

При снижении давления нагнетания насосной системы система распределения становится более эффективной за счет снижения избыточного давления. В результате меньше утечек и меньше затрат на электроэнергию.

Это достигается за счет использования программируемого логического контроллера (ПЛК) в качестве контроллера насосной системы. Он определяет время дня и текущий расход, а затем передает соответствующую скорость насоса частотно-регулируемому приводу, увеличивая или уменьшая скорость для согласования давления с требуемым расходом для поддержания желаемого давления в критической точке.

Воздействие на окружающую среду и экономику

В этом анализе скорость утечки была принята очень низкой и консервативной. Общий уровень утечки оценивается в 551 880 галлонов в год, что составляет всего 1% от годового расхода системы, составляющего более 106 миллионов галлонов. Большинство экспертов считают, что скорость утечки для старых систем находится в диапазоне 10%. Скорость утечки, связанная с избыточным давлением, оценивается в 374 928 галлонов в год. Экономия затрат на электроэнергию, напрямую связанная с избыточным давлением, оценивается в $3,9.09 в год из расчета 10 центов за киловатт-час.

При постоянном давлении в системе 83 фунтов на квадратный дюйм стоимость электроэнергии составила 9 667 долларов США. При использовании управления давлением по времени экономия энергии составила 3909 долларов.

Концепция насосных станций с регулируемым расходом для управления утечками

Регулирование давления насосной станции является обычной практикой. В большинстве случаев это означает поддержание постоянного давления с помощью клапанов регулирования давления (PRV) или частотно-регулируемых приводов (VFD). PRV представляет собой механическое устройство, которое в первую очередь создает потери на трение в системе, аналогичные открытию или закрытию клапана, и представляет собой проверенный метод регулирования давления. Установите желаемое давление в системе, и клапан закроется или откроется, чтобы поддерживать постоянное давление нагнетания. Поскольку стоимость частотно-регулируемых приводов с годами снижается, в сочетании с большей надежностью, ЧРП стали популярными. В зависимости от входного сигнала датчика давления в системе частотно-регулируемый привод может замедлять или ускорять работу, чтобы поддерживать постоянное давление. И предохранительные клапаны, и частотно-регулируемый привод являются проверенными методами контроля давления, достигающими одной и той же цели.

Самое последнее усовершенствование в технологии – управление давлением нагнетания насосных станций на основе не только давления, но и расхода.

В этом случае давление нагнетания насосной станции может практически совпадать с заданным для соответствующего расхода; например, в примере, основанном на времени, где заданные значения заранее определены и запрограммированы в зависимости от времени суток. Добавляя к приложению точный расход, программируемый компьютер насосной станции может оценивать расход, давление и время суток. Затем ПЛК определит наиболее эффективное давление для станции, а затем отрегулирует скорость частотно-регулируемого привода в соответствии с этим требованием. Это относится только к потерям на трение и имеет минимальные преимущества для приложений с высоким статическим напором и низкими потерями на трение.

В насосных установках для большинства муниципальных распределительных систем потери напора на трение обычно превышают 10 фунтов на квадратный дюйм изб. или динамический напор 23 фута. В этом случае большинство систем выиграют от снижения давления нагнетания насосной станции в зависимости от времени или потребности, или того и другого.

Резюме и выводы

Взаимосвязь между снижением утечек и управлением давлением в системе очевидна. Снижение избыточного давления в распределительной системе сэкономит затраты на воду и электроэнергию. С другой стороны, лучший метод контроля давления менее очевиден из-за множества факторов, которые необходимо учитывать.

Операторам установок и проектировщикам систем ясно, что в большинстве случаев в определенное время суток в системах возникает избыточное давление. Это общепринятый недостаток, чтобы постоянно обеспечивать адекватное давление. Новые разработки в области управления частотно-регулируемым приводом, апробированные в других отраслях промышленности, открывают большие перспективы для систем распределения питьевой воды. Контроллеры насосной системы, реагирующие на состояние системы распределения, предлагают практичное решение дорогостоящей проблемы утечки избыточного давления.

Усовершенствованное управление насосом — Ирригация сегодня

Инновационные технологические решения обеспечивают более эффективное орошение.

RICK REINDERS & CHIP CARLSON

Хотя многие в ирригационной отрасли могут считать, что сельскохозяйственные насосные системы менее сложны, чем их аналоги для гольфа и ландшафта, во многих отношениях сельскохозяйственный рынок стал лидером в разработке новых технологий управления для ирригационных насосных систем. . Это, в свою очередь, помогло производителям лучше управлять своими насосными системами и повысить эффективность орошения, а также сэкономить на затратах на электроэнергию.

Например, на рынке круговых сельскохозяйственных машин производители используют облачную телеметрию для управления и координации круговых машин, насосного оборудования, затворов каналов, расходомеров и датчиков урожая. Существует множество функций облачной телеметрии, которые представляют реальную ценность для управляющих ирригационными системами. Наличие информации в облачной базе данных позволяет сложным алгоритмам анализировать данные для создания отчетов, создания расширенной логики управления и создания информационных панелей, которые можно просматривать с любого устройства с доступом в Интернет. Пароль пользователя автоматически определяет, какие данные приборной панели представлены, на каком языке и по местному времени. Интеграция насосных станций и круговых систем управления позволила добиться многочисленных улучшений.


Интеграция насосных станций и круговых систем управления позволила добиться множества улучшений.


Устранение перегрузки по давлению

Выбор насоса, независимо от рынка, обычно учитывает наихудший сценарий гидравлических требований ирригационной системы. Сюда входят максимальные потери напора из-за подъема и максимальные потери на трение, основанные на максимальном ожидаемом расходе. На самом деле ирригационная система работает в этом наихудшем сценарии лишь часть своего рабочего времени.

Если насосная станция настроена на единую уставку регулирования, исходя из этого наихудшего сценария, тратится огромное количество энергии, поскольку станция создает большее давление в системе орошения, чем необходимо. Усовершенствованные насосные системы можно запрограммировать на регулировку производительности насоса, чтобы компенсировать эти меняющиеся требования.

Например, в глубинных насосных системах глубина до воды может сильно варьироваться из-за снижения уровня воды при перекачке и сезонных колебаний уровня водоносного горизонта. Эта максимальная ожидаемая глубина до воды должна быть учтена в требуемом общем динамическом напоре насоса, даже если глубина до воды может быть меньше в течение большей части цикла полива. Используя частотно-регулируемый привод насоса с датчиком давления на поверхности, система управления сможет регулировать скорость насоса, чтобы точно соответствовать требованиям к давлению в ирригационной системе и снизить потребление энергии. Элементы управления также могут контролировать ток двигателя и ограничивать скорость вращения насоса, чтобы избежать перегрузки и предотвратить работу насоса слишком далеко от своей кривой.

Управление требованиями системы

Во многих сценариях земля, орошаемая круговыми установками, имеет значительные перепады высот. Расположение датчика давления на конце круговой системы позволяет насосу с частотно-регулируемым приводом модулировать свою производительность, чтобы поддерживать желаемое давление в круговой системе независимо от ее местоположения в поле. Это устраняет потерю энергии, которая может возникнуть при избыточном давлении в низких областях поля.

В более крупных системах, где центрально расположенная насосная станция подает воду в несколько круговых насосов с различными требованиями к давлению, определение давления, требуемого от насосной станции, является более сложной задачей. Благодаря современным технологиям можно отслеживать, какие поворотные круги работают, и давление в каждом работающем поворотном круге. На основе этих облачных данных алгоритм управления вычисляет требуемую уставку регулирования давления и передает ее на насосную станцию, чтобы убедиться, что давление, подаваемое в систему орошения, точно соответствует требованиям работающих кругов.

Измеренная экономия энергии в размере 25–30 % достигается благодаря этому методу управления с обратной связью.

Хотя эта концепция возникла на сельскохозяйственном рынке, она доказала свою эффективность на рынках гольфа и ландшафтного дизайна. В этих системах используются датчики, установленные на узлах трубопроводной системы, и благодаря координации с органами управления орошением уставка давления насосной станции регулируется для поддержания минимального желаемого давления в узлах трубопроводов, где происходит орошение.

По мере того, как производители ирригационного оборудования на всех рынках добавляют датчики давления к своим спринклерам, появится больше возможностей для усовершенствования контроля динамического давления.

Управление несколькими точками

Облачная телеметрия позволяет специалистам по водным ресурсам собирать данные с сотен насосных станций, чтобы не тратить время на поездку в места для проверки оборудования. Собранные данные можно использовать для создания отчетов об использовании воды и энергии, создания предупреждений о проблемах с оборудованием и предоставления гистограммы условий работы станции, чтобы помочь им в устранении неполадок (см. рис. 1).

Рисунок 1. На этой гистограмме показаны условия работы станции, полученные на основе данных, собранных об использовании воды и энергии.

Департамент транспорта Калифорнии хотел контролировать работу и использование воды почти 300 насосных станций вдоль развязок автомагистралей возле Бейкерсфилда и Фресно, Калифорния. Как правило, отдел направляет бригады в разные места для записи показаний расходомера и проверки наличия неисправностей в оборудовании. Это была длительная и трудоемкая операция. В 2016 году они обратились к производителю для установки новых систем облачной телеметрии на существующее и вновь приобретенное насосное оборудование. Теперь один менеджер может просматривать сотни насосных станций по всему городу в одном изображении со спутника и быстро сканировать любые насосные станции, на которых установлены аварийные сигналы. Затем он может детализировать изображения отдельных станций, чтобы точно увидеть, что происходит в каждом месте. Работая с производителем, они настроили основанную на правилах логику и систему оповещения, поэтому, когда на насосной станции возникает проблема, оповещение может быть отправлено соответствующим менеджерам. Этот менеджер может быстро получить доступ к станции с любого устройства, подключенного к Интернету, чтобы определить проблему и либо сбросить сигнал тревоги, либо направить на место ремонтную бригаду.

Пути к облаку

Пути радиотелеметрии

Для CalTrans их желаемым способом подключения к оборудованию была беспроводная магистраль Ethernet, которую они создали для мониторинга автомагистралей, поэтому для подключения насосных станций к облаку использовался Ethernet RTU. В большинстве приложений для мониторинга одного насоса сотовый RTU собирает данные и передает их в облако через сотовую сеть. Крупные сельскохозяйственные заказчики могут предпочесть иметь радиосеть для своих ферм, поэтому часто для сбора данных насосных станций используются радиотерминалы, которые агрегируются на мостовом устройстве, чтобы обеспечить Ethernet- или сотовый путь к облаку. Это устраняет многократную плату за сотовое соединение.

Логика на основе правил для ИИ

Беспроводное соединение Ethernet для удаленного мониторинга насосных станций на основе облака

Благодаря огромному количеству данных о насосном оборудовании, собранных в облаке, есть возможности для извлечения этих данных для создания более интеллектуальных систем и элементов управления. Логика, основанная на правилах, в облачной среде позволяет сложным алгоритмам отслеживать нежелательные условия, такие как чрезмерная цикличность работы насоса, вибрация, колебания давления и уровня или чрезмерное энергопотребление, для создания предупреждений и определения требований к профилактическому обслуживанию подключенного оборудования. Раннее выявление таких проблем, как вибрация подшипников или перегрев двигателя, позволяет решить проблему до того, как произойдут дорогостоящие катастрофические отказы.

Совместное использование данных

Сбор данных в облаке позволяет осуществлять совместную работу и обмен данными с другими облачными платформами почти в режиме реального времени. Собранные данные насосной станции могут быть переданы с использованием протокола API облачным контроллерам планирования орошения, чтобы обеспечить более интеллектуальное взаимодействие. Например, если насосная станция теряет часть своей насосной мощности из-за отказа насоса, эта частичная потеря мощности распределяется с графиком орошения, который реагирует снижением скорости потока или расстановкой приоритетов в расписании, чтобы обеспечить полив критически важных участков. Собранные данные об использовании воды и глубине воды в колодцах могут быть переданы ирригационным районам для более эффективного управления сезонными водными ресурсами. Энергопотребление можно отслеживать и делиться с энергетическими компаниями, чтобы снизить нагрузку в случае неизбежных отключений электроэнергии.

Повышение эффективности

Распространенная фраза: «Вы не можете улучшить то, что не можете измерить». Это особенно верно для планировщиков полива. Ясно, что существуют ограничения, определяющие графики орошения, но мало обратной связи относительно эффективности одного графика по сравнению с другим. Собирая потребление энергии и определяя количество перекачиваемой воды в киловаттах на акр-фут или киловаттах на галлон, планировщики могут сравнивать эффективность каждого цикла орошения и вносить уточнения для достижения максимальной эффективности (см. рис. 2).

Рис. 2. Отслеживание ежедневного и совокупного энергопотребления вместе с текущим использованием

Контроль на ладони

Одним из многих преимуществ облачной телеметрии является возможность мгновенного доступа к полевому оборудованию с любого устройства с доступом в Интернет . Независимо от того, в какой точке мира находится оператор, при наличии подключения к Интернету он сможет отслеживать и контролировать работу своих насосных станций с мобильного телефона, который у него есть.

Рик Рейндерс   и Чип Карлсон являются деловыми партнерами и со-генеральными директорами Watertronics LLC.

Водный транспорт, насосные станции и станции повышения давления

Водный транспорт

В большинстве случаев вода нужного напора и объема отсутствует там, где она нужна. Поэтому водоснабжение без насосных станций немыслимо. Существует множество различных типов насосных станций. Стандартные насосные системы могут удовлетворить большинство требований. Однако во многих случаях требуются специфичные для системы конфигурации, которые не могут оптимально обслуживаться стандартными системами. Именно здесь мы приходим с нашим обширным опытом и независимостью от какой-либо конкретной марки.

Пружинные насосные станции

Обычно родниковая вода находится на более низких уровнях и поэтому в большинстве случаев должна перекачиваться в более высокие резервуары или резервуары для хранения воды/приподнятые резервуары. Также несколько отдельных родников собраны в одном приемном резервуаре и вода из них подается совместно через одну насосную станцию. Насосные станции родниковой воды состоят из шахты сбора, насосно-монтажной и диспетчерской. В нашем Пружинная насосная станция «Arethusa» , полностью изготовленная из нержавеющей стали и основанная на наших HydroSystemTanks®, все необходимые компоненты объединены в единую функциональную конструкцию «под ключ». Остальные услуги, которые должен предоставить заказчик, включают земляные работы, устройство цокольного слоя/фундамента и подключение к трубопроводу.
Это позволяет постоянно контролировать качество поступающей родниковой воды в каждом отдельном притоке, а объем можно измерять, помещать на промежуточное хранение и непрерывно транспортировать в резервуар для хранения воды в заданном объеме. Вода может быть автоматически отведена, если качество воды недостаточное (например, повышенная мутность) в одной из ветвей родника.

Повышение давления

Установки повышения давления незаменимы во многих областях снабжения. Они компенсируют потери давления в трубопроводе и обеспечивают постоянное наличие питьевой воды на всех участках/зонах подающей магистрали в необходимом объеме и под нужным давлением. Конфигурация насосов и всасывающих и напорных резервуаров, которые могут потребоваться, зависит от соответствующих местных условий и требований.
Наши критерии выбора: 

  • Оптимальная адаптация к объему потребления/профилю нагрузки
  • Незначительные колебания давления благодаря бесступенчатому управлению насосом 
  • Максимальная эффективность насоса 
  • Минимальные эксплуатационные расходы

Как минимум, все системы оснащены обычный стандарт для гидротехнических сооружений или настраиваются как индивидуально, так и оптимально.

Компактные системы повышения давления

Индивидуально сконфигурированные установки повышения давления с числом управляемых насосов до 8 используются, в частности, для обеспечения полного снабжения в широком диапазоне характеристик, включая поставки для пожаротушения. Здесь особенно важно, чтобы системы имели избыточную конструкцию.
Мы поставляем специально адаптированные компактные агрегаты с непосредственно установленными преобразователями частоты с количеством насосов до 8, а также системы с отдельными преобразователями частоты и возможностью каскадной работы по схеме звезда-треугольник для аварийного режима.

Глубокие колодцы или забор воды из озера

Мы также поставляем высококачественные и оптимально адаптированные решения для транспортировки грунтовых вод или воды из озера с помощью вакуумирования. В настоящее время управление насосами все чаще осуществляется с использованием современной силовой электроники. Системы, работающие от частотных преобразователей, гарантируют постоянную динамику давления даже при значительных колебаниях расхода воды или уровня стоячей воды. В этой, более консервативной области, мы без исключения полагаемся на качественные и долговечные технологии. Эти технологии, как правило, являются наиболее экономичными, если рассматривать их в долгосрочной перспективе.

Информационный центр по международным продажам Загрузки
  • Управление климатом на гидротехнических сооружениях

использованная литература
  • HST-L — 20 м³ | Насосная станция родниковая

Дальнейшая информация
  • Гидротехнические сооружения
  • Резервуары высокого уровня
  • Насосные станции
  • Бустерные станции
  •  Продукция
  •  Насосные станции

Знания

  • Информационный бюллетень
  • Литература

 

Работа

  • Работа
  • Ученичество

    4

    5 90

    © HydroGroup® 2022

    Насосная станция — Инженерно-технологический университет Висконсина Ошкош

    Насосные станции широко используются в городской и промышленной инфраструктуре. Наиболее типичные области применения включают следующие системы: (i) централизованное водоснабжение и канализация, (ii) ливневая канализация, (iii) отопление, (iv) охлажденная вода (здания, промышленность), (v) охлаждение и пар электростанций, и (vi ) переработанный продукт в промышленном секторе (сырая нефть на нефтеперерабатывающих заводах, целлюлоза в бумажной промышленности, шлам на заводах по производству этанола, молочные продукты на молочных заводах и т. д.).

    По данным Международного энергетического агентства, двигатели используют 46% всей вырабатываемой электроэнергии. В промышленном секторе этот показатель выше и достигает 65%. 20% энергии, используемой в производственном секторе, потребляется насосными системами. В коммунальном хозяйстве, где насосы используются в системах водоснабжения/канализации/ливневой канализации, этот показатель может быть еще выше. Эти цифры в сочетании с тем фактом, что большинство насосных систем, однажды спроектированных и установленных, никогда не оптимизировались, показывают значимость возможных улучшений в этом секторе. Оптимизация энергоемких процессов также идеально соответствует одной из главных задач инженерной мысли, поставленной Национальной инженерной академией: восстановить и улучшить городскую инфраструктуру.

    Все эти причины в совокупности дали толчок к созданию экспериментальной насосной станции в виде уникальной конструкции в Учебно-энергетической исследовательской промышленной лаборатории UW Oshkosh.

    ЭКСПЕРИМЕНТАЛЬНЫЙ ПРОЕКТ

    Система содержит четыре центробежных насоса АМТ П63ГСР-4977 (НА №1 – №4), установленных параллельно, и комплект арматуры номинальным диаметром 1-1/2”. В предлагаемой насосной системе каждый насос может управляться тремя возможными способами: (i) частотно-регулируемый привод №1 – №4 (Automation Direct GS2-21P0), (ii) дроссельно-регулирующий клапан Johnson Controls RV №1 – №4 (VG1241ES+906ГГА), и того же типа (iii) перепускной клапан БВ №1 – №4. Перекачиваемая вода поступает в набор резервуаров для воды (по 68 литров каждый) через нагрузочную систему, состоящую из шаровой системы с полным проходом (SV № 1 — № 4) и нагрузочных клапанов (LV № 1 — № 4). После каждого насоса в экспериментальной системе были установлены полнопроходные шаровые характеристические клапаны (CV № 1 – № 4), которые не встречаются в типовых системах. Эти клапаны могут изменять характеристики насоса в экспериментальных целях. Экспериментальная установка дополнительно оснащена следующими измерительными приборами: 1) счетчики электроэнергии АКУВИМ II-Д-60-5А-П1 (ЭМ №1-№4), 2) датчики давления на всасывании ОМЕГА РХ359.-030A5V (НС №1 – №4), (iii) датчики давления нагнетания IFM PX9114 (PD №1 – №4) и (iv) магнитно-индуктивные расходомеры IFM SM9001 (FM №1 – №4). Аналоговый входной модуль National Instrument NI 9205 преобразует все измерительные сигналы (4–20 мА или 1–5 В) в цифровую форму. Кроме того, аналоговый модуль вывода National Instrument NI 9264 позволяет управлять автоматическими клапанами (RV №1 – №4) и приводами с регулируемой скоростью (VSD №1 – №4). Оба модуля подключены к шасси сбора данных National Instrument NI cDAQ-9.174 позволяет дистанционно управлять устройством. Такая конфигурация системы вместе с программой собственной разработки, основанной на платформе LabVIEW 2015, позволяет осуществлять расширенный контроль и сбор данных.

    ИНТЕГРАЦИЯ С ПРОГРАММОЙ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ

    Компоновка насосной станции позволяет использовать регулярные курсы инженерных технологий, например, ET 318 Fluids II, ET 221 Компоненты машин, ET 320 Motors & Drives, ET 322 Design Problems , ЭТ 390 Мехатроника и проект ET 410 Capstone. В будущем это также позволит возможные факультативные курсы, например: Передовые системы измерения и управления или Управление энергопотреблением в промышленном секторе. Помимо обычных занятий, экспериментальная установка позволяет также проводить более продвинутые исследования по разработке метода оптимизации сложной многонасосной системы, установленной в параллельной конфигурации.

    Представленная насосная система была создана в рамках совместного проекта со студентами UW Oshkosh ET. Особая благодарность Стивену Хопфенспергеру (слева) и Нельсону Фигероа (в центре), которые посвятили свое время и навыки строительным работам этой насосной системы, а также Джамалу Арафе (справа), которые подготовили техническую документацию насосной системы во время его проект независимого обучения бакалавриата.

    ИССЛЕДОВАНИЯ

    На основе измерений, проведенных на насосной станции, опубликована исследовательская статья журнального качества под названием «Генетическая оптимизация и экспериментальная проверка сложной параллельной насосной станции с центробежными насосами».

    Целью данного исследования является оптимизационный анализ сложной насосной системы с набором параллельных центробежных насосов. Каждый насос на станции может управляться тремя различными способами: (i) нагнетательным клапаном, (ii) байпасным потоком и (iii) приводом с регулируемой скоростью (VSD). Как следует управлять системой, чтобы получить самые высокие показатели оценки в условиях частично загруженного потока? Для этой цели были определены три цели оценки системы: (i) минимизация энергопотребления, (ii) балансировка расхода и (iii) максимизация общей эффективности. Эти значения выражены в зависимости от входных параметров управления на каждом насосе: (i) частота частотно-регулируемого привода, (ii) давление нагнетания после насоса и (iii) расход на выходе, обусловленный перепускным потоком. Для ответа на поставленный вопрос для всех оценщиков был проведен генетический оптимизационный анализ (GENOCOP) с использованием уникально разработанного числового кода (C++).

    Полученные решения доказали наличие нескольких локальных экстремумов для всех целевых функций. Спецификация решений показала, что минимизация энергопотребления является наиболее надежной оценкой из всех предложенных. Кроме того, чтобы связать исследование, разработку и внедрение, все анализы моделирования были проверены измерениями, выполненными на реальной экспериментальной насосной станции. Оба результата: оптимизация генетического алгоритма и проведенные измерения подтвердили друг друга. Помимо общих утверждений, проведенный анализ позволил сделать более конкретные выводы, касающиеся конкретной насосной станции, использованной в данном исследовании.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *